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Abstract 
              

 

Genomic analyses have revealed that anatomically modern humans (AMH) interbred with 

Neanderthal and Denisovan archaic populations about 50,000 years ago. Characterizing 

the impact of archaic introgression on the genomes of present-day modern humans is 

important to understand the functional consequences of archaic-introgressed genetic 

variants. The detection of archaic introgression has been carried worldwide using genomic 

data from the 1,000 Genomes Populations which include Mexican individuals living in Los 

Angeles (MXL). However, we lack a comprehensive understanding of the distribution of 

archaic introgression in present-day Mexico. Here I applied SPrime, a reference-free 

method for detecting archaic introgression, to 5,833 genome-wide genotypes from the 

Mexican Biobank Project (MXB). I show that imputed genomes are a valuable resource 

for inferring archaic-introgressed segments. I inferred a set of 146,875 SNPs that are likely 

to be from Neanderthal or Denisovan origin. I find that individuals in the southern part of 

Mexico have on average more archaic alleles compared to individuals in the northern part 

of Mexico, which is consistent with the observed positive correlation between Indigenous 

American genetic ancestries and the number of sites with archaic alleles, and the 

observed negative correlation between European and African genetic ancestries and the 

number of sites with archaic alleles. I also find an enrichment of Denisovan genetic 

ancestry in MXB individuals compared to MXL. I provide a valuable resource for 

characterizing the genomic landscape of archaic introgression in present-day Mexico. 
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Figure 1. Sampling location of the 6,057 individuals in The Mexican Biobank Project. Gray 

dots represent samples that were genotyped. Purple triangles represent samples that 

were both genotyped and whole-genome sequenced (Indigenous MXB). All samples were 

imputed, however, for all the subsequent analysis I used a subset of 5,833 unrelated 

individuals (MXB-imputed). 

Figure 2. Imputation performance of a panel of 5,933,276 bi-allelic SNPs in 50 Indigenous 

MXB individuals broadly distributed across Mexico. A) Relationship between imputation 

accuracy, R2, and the averaged genotype correlation for all SNPs in all autosomes. Black 

lines are standard-error bars. B) Relationship between minor-allele frequency and the 

average genotype correlation across the non-reference interval. 

Figure 3. Principal component analysis (PCA) plots of a panel of 868,091 LD-pruned 

SNPs. Individuals are color-coded by population (archeological region). Dots represent 

the results obtained from the MXB-imputed data, rhombus represent the results obtained 

in Sohail et al., 2022 and asterisks represent the results obtained for the whole-genome 

sequence data from the 50 Indigenous MXB individuals. A) PCA of MXB with global 

reference data from the 1000 Genomes Project. Note that Sohail et al., 2022 used a 

broader set of population references, and therefore PCs scores (rhombus) are slightly 

different to the ones presented in this thesis (dots). B) PCA of MXB only. C) PCA of 

Indigenous MXB. 

Figure 4. Concordance of ADMIXTURE global genetic ancestry estimates for MXB-

genotyped data and MXB-imputed data. A) African genetic ancestries, B) European 

genetic ancestries, C) Indigenous American genetic ancestries. 

Figure 5. Global genetic ancestry estimates for MXB individuals using Gnomix. Each 

individual is represented by a vertical bar, and individuals are grouped by state. States 

are depicted from north to south. Indigenous American, European and African genetic 

ancestries are colored with pink, yellow and purple, respectively. 

Figure 6. Putatively archaic-introgressed segments inferred in Indigenous MXB using YRI 

as an outgroup. A) Positive Prediction Value for each chromosome. Red dashed line 
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represents the average value among chromosomes. B) Distribution of the length of 
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1. Introduction 
              

 

The analysis of whole-genome sequences of Neanderthal genomes (Green et al., 2008, 

Green et al., 2010, Prüfer et al., 2014, Prüfer et al., 2017) and Denisovan genomes (Reich 

et al., 2010, Meyer et al., 2012, Prüfer et al., 2014, Sawyer et al., 2015) has elucidated a 

complex admixture landscape and multiple events of introgression between archaic 

hominins and anatomically modern humans (AMH) (Prüfer et al., 2014, Villanea and 

Schraiber, 2018). Genomic analyses have revealed that modern humans interbred with 

archaic hominins such as Neanderthals and Denisovans since 50,000 years ago (Plagnol 

et al., 2006, Wall et al., 2009, Sankararaman et al., 2014, Villanea and Schraiber, 2018). 

This introgression event introduced archaic variants into the ancestral out-of Africa (OoA) 

human gene pool. Subsequently, all present-day individuals in Eurasia inherited ~2% of 

their genome from Neanderthals (Green et al., 2010), and individuals from Oceania 

inherited ~5% of their genome from Denisovans (Reich et al., 2010). Additionally, it has 

been suggested that ghost populations (unidentified hominin species) interbred with 

African populations (Wall et al., 2009, Hammer et al., 2011) but this result is still 

contentious (Ragsdale et al., 2023). 

 Genetic variants inherited from archaic hominins (archaic-introgressed variants) 

have functional consequences that have helped humans to adapt to the hypoxic 

environment of the high-altitude Tibetan plateau (Huerta-Sánchez et al., 2014) or to have 

increased risk of type 2 diabetes (The SIGMA Type 2 Diabetes Consortium et al., 2014). 

Therefore, it is necessary to identify specific haplotypes that were inherited from archaic 

hominins (Huerta-Sánchez et al., 2014, Sankararaman et al., 2014, Vernot and Akey, 

2014, Browning et al., 2018) to understand the functional, phenotypic and evolutionary 

consequences of archaic introgression. 

 We currently have archaic-introgression maps from worldwide populations based 

on data from the 1,000 Genomes Project (Browning et al., 2018) but there is a lack of a 

fine-scale introgression map from Mexican individuals living in Mexico. This is important 

to understand the impact of archaic introgression on the adaptation to different 

environments (Gower, Graham, et al., 2021) or on the evolution of complex traits of 

medical interest (McArthur et al., 2021, Koller et al., 2022, Wei et al., 2023). 
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 Several methods have been developed to identify archaic alleles in present-day 

genomes (Plagnol, Vincent, and Jeffrey D. Wall 2006, Racimo et al., 2015, Browning et 

al., 2018, Skov et al., 2018). A noteworthy method is SPrime (Browning et al., 2018), a 

reference-free method for inferring archaic-introgressed variants. SPrime is optimized for 

detecting Neanderthal and Denisovan haplotypes and it is based on the observation that  

linkage disequilibrium (LD) is higher in introgressed genomic regions than in non 

introgressed regions. SPrime has better accuracy than previous methods such as S* 

(Plagnol and Wall, 2006), and brings the possibility of comparing the detected archaic-

introgressed segments to reference archaic genomes to identify the archaic introgression 

source (Browning et al., 2018).  

 SPrime has been applied to several populations from Eurasia and Oceania 

(Browning et al., 2018, Zhang et al., 2021). For Neanderthals, studies have focused on 

modern Eurasians, as hundreds of genomes are available from the 1000 Genomes 

Project (Browning et al., 2018). However, we lack a comprehensive understanding of how 

introgression has shaped the complex admixture landscape of Admixed populations from 

the Americas. Recent research has shown that there is a large potential for discovering 

novel adaptive archaic introgression in Admixed genomes (Villanea et al., 2022), as 

European colonization may have impacted the distribution of archaic-introgressed 

variants (Villanea et al., 2022, Witt et al., 2023). 

 In this work, I address the lack of studies by analyzing archaic-introgressed 

variation in present-day Mexico. I applied SPrime to 5,833 imputed genomes of individuals 

from the Mexican Biobank Project to identify putative archaic-introgressed alleles. I 

identified a set of archaic-introgressed variants that are putatively from Neanderthal or 

Denisovan origin. I leverage the resulting maps of Neanderthal or Denisovan ancestry to 

characterize the distribution of Neanderthal or Denisovan introgression in present-day 

Mexico. I find that individuals sampled in the southern part of Mexico have, on average, 

more sites with archaic-specific alleles than those sampled in the northern part of Mexico, 

which is consistent with a greater proportion of Indigenous American genetic ancestries 

in Southern Mexico (Moreno-Estrada et al., 2014, Sohail et al., 2022). In concordance 

with previous studies (Witt et al., 2023), I find that the number of archaic-introgressed 

variants is proportional to the proportion of Indigenous American genetic ancestry. 
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Although MXL individuals from 1000 Genomes Project are commonly used to represent 

present-day archaic variation in Mexico, I find that individuals in MXB have more 

Denisovan ancestry than MXL individuals. 

 Overall, I inferred a map of putatively archaic-introgressed variants identified in 

individuals residing in present-day Mexico. My results provide resolution to the distribution 

of Neanderthal and Denisovan archaic-introgressed variants in Mexico, and shed light on 

the history and evolution of introgression events in Mexico. This will be useful for 

understanding the phenotypic consequences of archaic introgression in Mexico on future 

studies. 
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2. Results 
              

 

2.1. Imputation performance of the Mexican Biobank Project Genomic Data 

I assessed the performance of the imputation algorithm the MXB Team employed for 

imputing the MXB-genotyped data. For doing so, I leveraged genomic information of a 

panel of 50 Indigenous MXB individuals broadly distributed across Mexico (Figure 1, 

Materials and Methods). The 50 Indigenous MXB individuals have whole-genome 

sequencing data and imputed data. The MXB Team generated the imputed dataset by 

using the Trans-Omics for Precision Medicine (TOPMed) Imputation Reference Panel 

(Taliun et al. 2021) through the Michigan Imputation Server. Therefore, I created a dataset 

containing information for 5,933,348 bi-allelic SNPs that are present in both the imputed 

and whole-genome sequence data for the 50 Indigenous MXB individuals (Materials and 

Methods). 

 

Figure 1. Sampling location of the 6,057 individuals in The Mexican Biobank Project. Gray dots represent 

samples that were genotyped. Purple triangles represent samples that were both genotyped and whole-

genome sequenced (Indigenous MXB). All samples were imputed, however, for all the subsequent analysis 

I used a subset of 5,833 unrelated individuals (MXB-imputed). 



   5 

 

 I evaluated imputation performance by computing four different metrics: genotype 

correlation, genotype accuracy, heterozygotic precision and homozygotic precision. I 

defined genotype correlation as the Pearson correlation coefficient between the real allele 

dosages and the imputed allele dosages. Genotype accuracy was defined as the ratio of 

genotypes that were correctly called in the imputed data to the number of called 

genotypes. Finally, I defined heterozygotic precision as the ratio of heterozygotes that 

were correctly called in the imputed data to the number of called heterozygous in the real 

data and homozygotic precision as the ratio of homozygous that were correctly called in 

the imputed data to the number of called homozygous in the real data. 

 The imputation algorithm that the MXB Team employed, minimac2 (Fuchsberger 

et al., 2015), returns an imputation accuracy R2 value for each imputed marker. However, 

this metric may not be representative of how well the imputed markers are mimicking the 

whole-genome markers for the same set of individuals. I defined four R2 cutoff values (R2 

> 0.05, 0.1, 0.2 and 0.3) to assess the relationship between R2 and the four computed 

metrics. Then, I computed the average value for each imputation metric using all the SNPs 

that had an R2 value above the R2 threshold. 

 Figure 2 panel A shows the relationship between the average genotype correlation 

value and the R2 cutoff values. As expected, I observed an increase in the average 

correlation as the R2 value increases. I observed the same pattern for the other three 

computed statistics (Supplementary Figure 1). However, this increment is very minimal 

for all metrics, being less than 0.01% for all the metrics considered. Since MXB-imputed 

markers with R2 > 0.05 have similar average genotype correlation to markers with the 

other three tested R2 cutoff values, I decided to use 0.05 as the R2 cutoff value. 

 To assess how allele frequency impacts imputation performance, I computed the 

minor-allele frequency for all markers with R2 > 0.05. Figure 2 Panel B shows the 

relationship between the minor-allele frequency of each imputed marker and the average 

genotype correlation. I observed that the genotype correlation increases as the minor-

allele frequency increases, which is expected as imputation accuracy tends to be worse 

for rare variants (MAF < 0.5%) (Jiménez-Kaufmann et al. 2022). 
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 Overall, I have demonstrated that the MXB-imputed markers with R2 > 0.05 were 

imputed with high accuracy. Based on my results, I conclude that an R2 cutoff value of 

0.05 is reasonable for subsequent analysis that will use imputed data to call introgressed 

archaic segments. 

 

Figure 2. Imputation performance of a panel of 5,933,276 bi-allelic SNPs in 50 Indigenous MXB individuals 

broadly distributed across Mexico. A) Relationship between imputation accuracy, R2, and the averaged 

genotype correlation for all SNPs in all autosomes. Black lines are standard-error bars. B) Relationship 

between minor-allele frequency and the average genotype correlation across the non-reference interval. 

 

2.2. Population structure of the Mexican Biobank Project imputed markers 

I conducted population structure analyses to further evaluate imputation performance of 

the MXB-imputed markers. This is an important step as imputation can introduce bias if 

the reference panel does not adequately represent the genetic diversity of the target 

population (Jiménez-Kaufmann et al. 2022). 

 I begin by conducting a Principal Component Analysis (PCA) using data from MXB-

imputed and three reference populations: Yorubas as Africa (AFR), Iberians as Europe 

(EUR) and Peruvians (PEL) as Indigenous America (AMR) from the 1000 Genomes 

Project, to capture predominant axes of population structure and to compare my results 

with the ones obtained in Sohail et al., 2022 (Materials and Methods). 

 Figure 3 panel A shows the genetic variation in MXB-imputed in relation to 1000 

Genome reference populations. In agreement with Sohail et al., 2022, I found that the 

values for the first two PCs for most MXB-imputed individuals are similar to those of 
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present-day individuals from America and Europe, which is consistent with the complex 

biological admixture process caused by the Spanish colonization. By analyzing MXB-

imputed alone (Figure 3: B), I observed that there is subtle genetic substructure within 

Mexico, which reflects the effects of migration among the different archeological regions.  

However, PC3 slightly reflects population substructure between the Mayan region and the 

rest of Mexico (Supplementary Figure 2). 

 I analyzed the impact of imputation on the population structure of Indigenous MXB 

individuals by performing a PCA analysis on a data panel comprising whole-genome 

information for the 50 Indigenous MXB individuals (n SNPs = 351,877) (Materials and 

methods). Notably, population substructure for Indigenous MXB is well reflected by MXB-

imputed data, as it is able to maintain population structure among Indigenous MXB 

individuals (Figure 3: C). 

 

Figure 3. Principal component analysis (PCA) plots of a panel of 868,091 LD-pruned SNPs. Individuals are 

color-coded by population (archeological region). Dots represent the results obtained from the MXB-imputed 

data, rhombus represent the results obtained in Sohail et al., 2022 and asterisks represent the results 

obtained for the whole-genome sequence data from the 50 Indigenous MXB individuals. A) PCA of MXB 
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with global reference data from the 1000 Genomes Project. Note that Sohail et al., 2022 used a broader set 

of population references, and therefore PCs scores (rhombus) are slightly different to the ones presented 

in this thesis (dots). B) PCA of MXB only. C) PCA of Indigenous MXB. 

 I computed ancestry estimates for MXB-imputed using the same set of LD-pruned 

SNPs (n = 868,091). This analysis was intended to evaluate the ability of imputation to 

preserve genetic ancestry proxies by comparing the results with the results obtained in 

Sohail et al., 2022. 

 The correlation between global ancestry proportions inferred from ADMIXTURE 

(Alexander et al., 2009) in MXB-genotyped data and MXB-imputed data is greater than 

0.99 for AFR, EUR and AMR ancestry estimates (Figure 4: A, B, C). 

Figure 4. Concordance of ADMIXTURE global genetic ancestry estimates for MXB-genotyped data and 

MXB-imputed data. A) African genetic ancestries, B) European genetic ancestries, C) Indigenous American 

genetic ancestries. 

 Since ADMIXTURE results obtained from the MXB-imputed data are highly 

consistent with the results in Sohail et al., 2022, I used Gnomix (Hilmarsson et al., 2021) 

to compute global and local genetic ancestry estimates within MXB-imputed individuals. I 

summed the contribution of segments in each chromosome with a particular ancestry 

inferred by Gnomix to define a genome-wide ancestry proportion for each individual 

(Materials and Methods). 

 I observed that individuals in MXB-imputed are inferred to be admixed with varying 

degrees of AFR, EUR and AMR ancestry among states in Mexico. The central and 
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southern states have higher levels of Indigenous American ancestry. Oaxaca is the state 

with the highest proportion of Indigenous American ancestry. I also observed that the 

northern states have on average a greater proportion of European ancestry, and African 

ancestry tends to be low across all states (Figure 5). 

 

Figure 5. Global genetic ancestry estimates for MXB individuals using Gnomix. Each individual is 

represented by a vertical bar, and individuals are grouped by state. States are depicted from north to south. 

Indigenous American, European and African genetic ancestries are colored with pink, yellow and purple, 

respectively. 

2.3. Detecting putative archaic-introgressed segments in present-day Mexico 

I applied SPrime (Browning et al. 2018) to characterize the genomic landscape of archaic 

introgression in MXB-imputed. SPrime is a reference-free method that detects archaic-

introgressed segments (i.e., sets of alleles) in the genome. I first apply SPrime to the 50 

Indigenous MXB individuals that have whole-genome data and imputed data (Materials 

and methods). The purpose of this analysis is to evaluate the ability of the imputed data 

to recover the archaic-introgressed regions in Indigenous MXB individuals. 

 By applying SPrime to the autosomes of 50 Indigenous MXB sequenced genomes, 

I inferred 1,171 segments comprising a set of putatively archaic-introgressed SNPs in 

present-day Mexico. Additionally, I applied SPrime to the 50 Indigenous MXB-imputed 

genomes and inferred 1,075 regions containing putatively archaic-introgressed SNPs. I 
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used 108 YRI individuals from 1000 Genomes Project as an outgroup for both analyses 

(Materials and Methods). 

 I computed the Positive Predictive Value as the ratio of the detected variants that 

are present in both the real and imputed calls to the total number of detected variants in 

the imputed calls to compare the inferred archaic-introgressed variants in the 50 

Indigenous MXB sequenced and imputed genomes. I observed that the Indigenous MXB-

imputed genomes are able to recover 96% on average of the putatively archaic-

introgressed SNPs detected in Indigenous MXB genomes (Figure 6: A). I also observed 

that the length of the introgressed-segments and the number of introgressed segments 

are highly concordant, and on average the segments identified in the sequenced genomes 

are larger (Figure 6: B). 

Figure 6. Putatively archaic-introgressed segments inferred in Indigenous MXB using YRI as an outgroup. 

A) Positive Prediction Value for each chromosome. Red dashed line represents the average value among 

chromosomes. B) Distribution of the length of introgressed segments. 

 These results demonstrate that the MXB-imputed data can recover the vast 

majority of archaic-introgressed variants in Indigenous MXB without adding more than 4% 

of spurious calls of archaic introgressed variants. This analysis provides evidence that the 

utilization of the MXB-imputed data is reliable for identifying archaic-introgressed 

segments in MXB. 

 Therefore, I applied SPrime to the autosomes of 5,833 MXB-imputed genomes 

using 108 YRI from 1000 Genomes Project as an outgroup. I inferred 3,117 segments 

comprising a total of 318,038 putatively archaic-introgressed SNPs. These regions are 

widely distributed across the autosomes. On average, these regions have a length of 
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222,183 bp that comprise about 102 SNPs (Figure 7: A). However, the largest 

introgressed segment is in chromosome 10 and has a size of 4,500,802 bp in 1,459 SNPs, 

while the smallest introgressed segment is in chromosome 19 and has a size of 1,994 bp 

in 12 SNPs. 

 Following Browning et al., I computed the match rate as the proportion of putative 

archaic alleles that match the archaic reference sequence. I used the genomes of the Altai 

Neanderthal and Altai Denisovan from Prüfer et al. (Prüfer et al., 2017) to eliminate 

regions that do not match the archaic references. The match rate reported is the 

proportion of matches for alleles that have enough coverage and mappability to be 

compared (Browning et al., 2018) (Materials and Methods). 

 The overall match rate to the sequenced Altai Neanderthal genome and to the Altai 

Denisovan genome is 0.53 and 0.22, respectively. The match rate distribution is visualized 

as a contour plot in Figure 8: A. The majority of the regions detected show a higher affinity 

to Neanderthal and low affinity to Denisovan. This is consistent with the observation of  a 

higher rate of Neanderthal introgression compared to Denisovan introgression in Mexican 

in Los Angeles (MXL) from 1000 Genomes populations (Browning et al., 2018).  

 As recommended by Browning et al., I isolated regions with either Neanderthal or 

Denisovan ancestry by considering segments identified in MXB individuals that have at 

least 30 putatively introgressed variants that can be compared to the Altai Neanderthal 

genome or to the Altai Denisovan genome and have a match rate of at least 30% to the 

Altai Neanderthal allele or to the Altai Denisovan allele (Browning et al. 2017, McArthur et 

al. 2022). 
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Figure 7. Putatively archaic-introgressed segments inferred in MXB using YRI as an outgroup. Results in 

B, C and D show results obtained after applying filters to isolate regions with Neanderthal and Denisovan 

ancestry. A) The distribution of the length of introgressed segments. B) The number of SNPs per segment 

that are comparable to the archaic genome. C) Proportion of SNPs per segment matching the Altai 

Neanderthal allele. D) Proportion of SNPs per segment matching the Altai Denisovan allele.  

 

 

Figure 8. Contour density plot of match proportion of introgressed segments to the Altai Neanderthal and 

to the Altai Denisovan genomes. For a given segment, a match rate of 0 denotes that for that segment, 

none of the alleles match the corresponding allele in the archaic-human reference. A) Density distribution 
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of match rate to archaic individuals (Neanderthal and Denisovan). B) Density distribution of match rate to 

archaic individuals after isolating regions with Neanderthal and Denisovan ancestry. 

 After applying these two filters to the segments identified in MXB-imputed, I 

recovered 1,411 high-quality segments comprising a total of 146,875 putatively archaic-

introgressed SNPs (Figure 7: B). The overall match rate of the high-quality segments to 

the sequenced Altai Neanderthal genome and to the Altai Denisovan genome is 0.79 and 

0.56, respectively (Figure 7: C, D). The match rate distribution is visualized as a contour 

plot in Figure 8: B. 

2.4. The distribution of archaic-introgressed variants across states in present-

day Mexico 

I used the 1,441 segments with isolated Altai Neanderthal and Altai Denisovan ancestry 

identified by SPrime in MXB-imputed to investigate the distribution patterns of archaic-

introgressed variants in Mexico. To do this, I calculated the number of sites with 

Neanderthal or Denisovan alleles (archaic SNPs), as well as the number of sites with 

Neanderthal-specific or Denisovan-specific alleles for each individual in MXB-imputed 

(Witt et al., 2023) (Materials and Methods). To examine how the number of sites with 

archaic alleles varies among states in Mexico, I grouped the individuals depending on 

their sampling location to be representative of the 32 states in Mexico. I found that 

individuals in Oaxaca have the greatest number of sites with archaic alleles (12,083 on 

average), followed by Puebla (12,006 on average). Individuals in Chihuahua have the 

fewest number of sites with archaic alleles (10,333 on average) (Figure 9). 

 The same is true for Neanderthal and Denisovan-specific alleles. Oaxaca is the 

state with the greatest number of sites with archaic alleles (7,422 and 658 on average) 

and Chihuahua is the state with fewest number of sites with archaic alleles (6,487 and 

104 on average) (Supplementary Figure 3, 4). All states have fewer Denisovan-specific 

variants than Neanderthal-specific variants, which is consistent with the distribution of the 

proportion of SNPs per segment that match the Altai Neanderthal allele or the Altai 

Denisovan allele (Figure 7: C, D). 
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Figure 9. The number of sites with archaic alleles (either Neanderthal, Denisovan) found in 1,411 segments 

detected by SPrime in 5,833 MXB individuals. Individuals are grouped according to their sampling location. 

Color coding is by archeological region. Boxplots represent the distribution of the number of sites with 

archaic alleles for each state. 

 Witt et al. show that there is a correlation between the number of archaic-alleles 

and the proportions of African, European and American ancestry in admixed populations  

(Witt et al., 2023). Based on that observation, I decided to compute the correlation 

between the amount of AFR, EUR and AMR ancestry and 1) the total number of archaic 

sites for each individual, and 2) the total number of archaic sites for each state in Mexico 

(Figure 10). As expected, at a global (all individuals) level, there is a positive correlation 

between Indigenous American ancestry and the total number of sites with archaic alleles 

(r2 = 0.70), and a negative correlation between African and European ancestry and the 

number of sites with archaic alleles (r2 =  -0.53 and -0.66, respectively). This is consistent 

with previous work that has shown that Yorubas from 1000 Genomes Project are expected 

to have no traces of Neanderthal or Denisovan ancestry. The negative correlation for 

European ancestry could be explained by the fact that admixture from Europe due to 
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Spanish colonization has diluted the archaic-introgressed signal in MXB (Witt el al., 2023). 

The same is true at a per state-level, r2 = -0.76, -0.96 and 0.98 for AFR, EUR and AMR. 

Figure 10. The correlation between percentages of African (AFR), European (EUR) and American (AMR) 

genetic ancestries and the number of sites with archaic alleles. The X-Axis is the genetic ancestry proportion 

for a given ancestry type (AFR as pink, EUR as yellow and AMR as purple). The Y-Axis is the number of 

sites with archaic alleles. The first row represents results at individual level and the second row represents 

results by grouping individuals by sampling location to account for states in Mexico. 

 I computed a One-Way Analysis of Variance (ANOVA) to test if there is a significant 

difference between the average number of archaic alleles according to sampling location. 

The p-value was < 2e-16, which leads to conclude that there are significant differences 

between states. I performed a multiple pairwise-comparison to detect if the mean 

difference between specific pairs of states is statistically significant. I used the 

pairwise.t.test() function in R with Bonferroni correction for multiple testing (Figure 11). 
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Figure 11. Heatmap representation of the p-values of multiple pairwise-comparison of the average number 

of sites with archaic alleles by state in Mexico. States are depicted from north to south. Significance levels 

are expressed by asterisks (* for p value < 0.01 and ** for p value < 0.001). 

 I found that there is a statistically significant difference between the number sites 

with archaic alleles in Oaxaca and the rest of states in Mexico apart from Hidalgo, Tlaxcala 

and Puebla. Interestingly, the majority of the pairs that have a statistically significant 

difference involve a comparison between one state located in the northern part of Mexico 

and another state located in the southern part of Mexico. 

 To further understand the distribution of archaic counts in MXB-imputed in contrast 

to other admixed populations, I computed the number of sites with archaic alleles for all 
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individuals from MXL, PEL, Colombians in Medellin (CLM) and Puerto Ricans in Puerto 

Rico (PUR) from the 1000 Genomes Project populations. I used the putative archaic-

introgressed segments identified by Browning et al (Browning et al. 2018) and restricted 

them to have at least 30 putatively introgressed variants that can be compared to the Altai 

Neanderthal or Denisovan genome and to have a match rate of at least 30% to the Altai 

Neanderthal or Denisovan allele (Browning et al. 2017, McArthur et al. 2022). 

 I observed that the number of sites with archaic alleles (either Neanderthal or 

Denisovan) in MXB-imputed is significantly different (p-value < 0.05) from the four tested 

1000 Genomes American populations but PEL (p-value 0.094). This can be explained by 

the fact that the genome-wide proportions of AFR, EUR and AMR ancestry for MXB-

imputed and PEL are similar. On average, MXL individuals have 0.038, 0.47 and 0.46 of 

AFR, AMR and EUR ancestry while PEL individuals have 0.007, 0.77 and 0.19 of AFR, 

AMR and EUR ancestry (Witt et al., 2023 using data from Martin et al., 2017). However, 

MXB-imputed individuals have 0.03, 0.63 and 0.31 of AFR, AMR and EUR ancestry. I 

observed that the number of sites with Neanderthal-specific alleles in MXB-imputed is 

similar to MXL and PEL and significantly different from CLM and PUR. This could be 

explained by the fact that MXL and PEL have a greater proportion of Indigenous American 

Ancestry compared to CLM and PUR (Witt et al., 2022). Interestingly, the number of sites 

with Denisovan-specific alleles in MXB-imputed is highly variable (min: 57, median: 558, 

max: 1088) (Figure 12). This can in part be explained by the fact that MXB individuals 

have variable proportions of Indigenous American and European ancestry (Figure 5).  
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Figure 12. Distribution of the number of sites with archaic alleles for all MXB individuals and all individuals 

from MXL, PEL, CLM and PUR in 1000 Genomes Project. Color-coding is for MXB (blue) and Admixed 

American populations (black). A) Archaic SNPs (either Neanderthal or Denisovan) B) Neanderthal-specific. 

C) Denisovan-specific. 
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3. Discussion 
              

 

Previous studies have revealed that present-day non-African human populations have 

inherited about 1 to 4% of their genetic ancestry from introgression with archaic individuals 

(Green et al., 2010, Reich et al., 2010). Here, I used the imputed genomes of 5,833 

present-day individuals broadly distributed across Mexico to address a series of questions 

regarding the accuracy of imputed data and the distribution of archaic introgression across 

Mexico. My work presents a rigorous pipeline to evaluate the performance of imputation 

on genotyping array data from Mexico and provides evidence on the reliability of the MXB-

imputed genomes to conduct genetic analyses. Additionally, I provide a set of putative 

archaic-introgressed alleles in each introgressed segment detected in MXB, as well as a 

set of archaic-variants that are likely to be from Neanderthal or Denisovan origin. 

 Neanderthal-match rates are consistent among MXB-imputed and Mexican in Los 

Angeles (MXL) from 1000 Genomes Populations (Browning et al. 2018). Interestingly, 

MXB-imputed have a higher proportion of Denisovan archaic-introgressed segments 

compared to MXL. This could be explained by the fact that MXB-imputed genomes have 

more Indigenous American ancestry than MXL, and therefore the archaic-introgression 

signal in MXB-imputed has not been diluted by admixture as in MXL (Villanea et al., 2022, 

Witt et al., 2023). Further research needs to be done to test this hypothesis.  

 Previous work from Witt et al. showed that there is a positive correlation between 

Indigenous American ancestry and the total number of sites with archaic alleles (archaic 

allele counts) (Witt et al., 2023). Since individuals sampled from the Mexican Biobank 

Project had a sample bias towards the representation of Indigenous American ancestry 

(Sohail et al., 2022), they have on average 20% more of Indigenous American ancestry 

than MXL. This suggests that the complex admixture processes that MXL individuals 

faced have diluted the contribution from archaic introgressed alleles (Villanea et al., 2022). 

 Furthermore, Witt et al. demonstrated that European ancestry is negatively 

correlated with archaic allele counts in populations with high proportions of American 

ancestry (Witt et al., 2023). Here, I observed the same pattern as individuals who have 

more European ancestry had fewer sites with archaic alleles.  
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 I provide insights into the distribution of archaic introgressed variants across states 

in Mexico. I demonstrated that there is a statistically significant difference in the number 

of sites with archaic alleles in individuals from the northern part of Mexico and the southern 

part of Mexico. This is explained by the fact that individuals from the northern part of 

Mexico have an increased proportion of European ancestry, which is consistent with 

previous work (Martínez-Cortés et al., 2012, Moreno-Estrada et al., 2014, Sohail et al., 

2022). This suggests that the signal of archaic introgression may vary according to the 

geographical location in Mexico. 

 I acknowledge that I have made several assumptions and choices in my work. First, 

I rely on the imputed data of MXB individuals for doing the archaic-introgression analysis. 

Even though several methods have been developed for inferring archaic introgression in 

present-day individuals, they all rely on whole-genome sequencing data (Browning et al., 

2018, Skov et al., 2018). However, underrepresented populations usually lack sequenced 

data (Bentley et al., 2017), such that there is a necessity of imputing genotyped data for 

increasing power to perform population genetic analyses (Jiménez-Kaufmann et al., 

2022). I conducted several analyses to demonstrate the reliability of the MXB-imputed 

data. I recognize that the panel I used is restricted to data of Indigenous MXB individuals 

that may not be able to fully capture the genetic variation of Mexico. Second, I assumed 

MXB-imputed genomes are grouped according to their sampling location to be 

representative of the 32 states in Mexico.  I acknowledge that the genetic makeup of a 

specific sampling location may not accurately represent the genetic composition of the 

individuals present at the sampling location. 

 Overall, I inferred a map of putatively Neanderthal and Denisovan introgressed 

segments identified in present-day Mexico. This thesis provides the first rigorous basis for 

detecting archaic introgression in present-day Mexico and it is a valuable resource for 

future studies to investigate the history of archaic-introgression events in Mexico. These 

archaic-introgressed haplotype maps can be used for elucidating the complex landscape 

of archaic introgression events in Mexico, as well as to investigate the phenotypic effects 

of archaic-introgressed variants in Mexican individuals. 
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4. Materials and methods 
              

 

4.1. The Mexican Biobank Project 

To investigate the genomic landscape of archaic introgression in present-day Mexico, I 

employed the Mexican Biobank Project (MXB) Dataset. This dataset was obtained 

through a collaboration agreement with CINVESTAV (MXB project lead: Dr. Moreno-

Estrada) for all the analyses conducted here. This dataset gathers genotyping information 

of 6,057 individuals from 32 states and 898 sampling localities in Mexico (Sohail et al., 

2022) (Figure 1). These individuals were recruited as part of the National Health Survey 

in 2000 (ENSA2000), which sampled around 40,000 participants across Mexico. In order 

to select individuals for genomic characterization, the MXB Team selected those 

individuals that can speak an Indigenous language in each state. They also maximize the 

representation of rural localities to account for representation of Indigenous American 

ancestry. The MXB is 70% female and comprises individuals born between 1910 and 

1980, all sampled in 2000 (Sohail et al. 2022). All individuals in MXB were genotyped at 

~1.8 million SNPs using Illumina's Multi-Ethnic Global Array (MEGA) (Sohail et al. 2022). 

 In addition to the genotyping data, I used whole-genome sequencing data 

generated by the MXB Team from 50 individuals with the highest proportion of Native 

American ancestry of the 6,057 individuals genotyped (Jiménez-Kaufmann et al. 2022). 

 The genotyping data can be used to perform whole-genome imputation. To do this, 

the MXB Team used the Trans-Omics for Precision Medicine (TOPMed) Imputation 

Reference panel on GRCh38 (Taliun et al. 2021) through the Michigan Imputation Server. 

As a result, genomic imputation was performed on the genotyped information of all 6,057 

individuals, which resulted in the availability of additional genetic information (imputed 

genomes) that can enhance genetic analysis. It must be emphasized that the 50 

Indigenous MXB individuals that had whole-genome sequencing data also contain whole-

genome imputed information based on data from the genotyping array. 

 The MXB-imputed data was generated using a reference file on the latest genome 

assembly, GRCh38, whereas both the genotyped and whole-genome data were mapped 

to the previous assembly, GRCh37. 
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 I used a bioinformatic technique to convert genomic information between reference 

builds to convert the imputed data from GRCh38 to GRCh37. This conversion involved 

the use of CrossMap (Zhao et al., 2014) to convert genome coordinates between 

assemblies. 

 Reference fasta files for GRCh37 were downloaded from The Broad Data 

Resources and the chain file for GRCh38 was downloaded using Ensembl FTP. 

 Table 1 shows the number of variants in the initial files, the number of variants that 

are called in GRCh38 but are not present in GRCh37 (unmapped variants) and the 

percentage of variants that are called in GRCh38 and are present in GRCh37 (mapped 

variants). 

Chromosome Total Variants Failed to Map % of Mapped Variants 

1 23,7347,13 730,781 96.92 

2 25,543,692 141,999 99.44  

3 20,864,167 151,554 99.27 

4 20,250,718 93,761 99.54 

5 18,909,563 83,963 99.56 

6 17,626,672 304,181 98.27 

7 16,990,285 632,800 96.28 

8 16,305,107 125,947 99.23 

9 13,263,350 320,395 97.58 

10 14,212,906 577,340 95.94 

11 14,563,388 423,812 97.09 

12 13,986,366 137,257 99.02  

13 10,435,997 30,227 99.71 

14 9,280,421 142,905 98.46  

15 8,667,566 77,497 99.11  

16 9,840,732 134,102 98.64  
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17 8,494,641 599,642 92.94 

18 8,253,586 3,906 99.95 

19 6,497,881 164,595 97.47 

20 6,631,675 148,960 97.75  

21 3,829,414 43,448 98.87 

22 4,140,642 144,354 96.51  

 

Table 1. LiftOver Performance of converting the MXB-imputed data in GRCh38 to the 

GRCh37 genome assembly. 

 As CrossMap (Zhao et al., 2014) disrupts the order of mapped variants, I used the 

bcftools (Danecek et al., 2021) command sort to rearrange the MXB-imputed files in a 

consistent manner. 

4.2. Imputation performance analysis 

I conducted a genomic imputation performance analysis to validate the reliability of the 

MXB-imputed genomes. Doing so involves comparing the imputed genotypes to actual 

genotypes from whole-genome sequences for a subset of the data. I used the intersection 

between the SNP positions of the Indigenous MXB whole-genome data and the MXB-

imputed data for the same 50 individuals. 

4.2.1. Data pre-processing 

The MXB-imputed markers are classified into three groups: 1) imputed, indicating that a 

marker was imputed but not genotyped, 2) typed, indicating that a marker was both 

genotyped and imputed and 3) typed_only, to indicate that a marker was genotyped but 

not imputed. 

 I restricted the imputation performance analysis to markers that are imputed. I 

extracted the 50 Indigenous MXB individuals from the MXB-imputed dataset. Additionally, 

I filtered out multi-allelic sites, indels, structural variants and duplicated sites in all 

autosomes. I also excluded monomorphic sites. Thus, I generated an Indigenous MXB-

imputed dataset comprising 6,359,016 bi-allelic SNPs. Similarly, for the Indigenous MXB 

whole-genome sequencing data, I removed multi-allelic sites, indels, structural variants in 
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all autosomes. I filtered out variants with missing call rates exceeding 0.05. The resulting 

files comprise 9,088,970 bi-allelic SNPs. 

 I computed the intersection between the SNPs position in the whole-genome 

sequencing dataset and the Indigenous MXB-imputed dataset. I named this intersection 

as the shared sites between the whole-genome and the imputed data for Indigenous MXB. 

I subsetted both the filtered Indigenous MXB whole-genome sequencing dataset and the 

Indigenous MXB-imputed dataset to contain only the shared sites between them. The 

data-processing was done using bcftools (Danecek et al., 2021) version 1.9, vcftools 

(Danecek et al., 2011) version 1.16 and plink2 (Chang et al., 2015). 

4.2.2. Analysis 

I employed the read_vcf() function from the scikit-allel (Miles et al., 2021) python package 

to compare the Indigenous MXB-imputed genotypes to the actual Indigenous MXB 

genotypes. I extracted genotype calls from the Variant Call Format (VCF) files for both the 

imputed and whole-genome dataset. 

 Subsequently, I computed four statistics: genotype correlation, genotype accuracy, 

heterozygotic precision, and homozygotic alternative precision, which were defined as: 

the correlation coefficient between both genotype vectors, the ratio of correctly called 

genotypes to the number of called genotypes, the ratio of correctly called heterozygotes 

to the number of called heterozygotes, and the ratio of correctly called homozygotes 

alternate to the number of homozygotes alternate, respectively. I computed each statistic 

for each SNP in the dataset. 

 Additionally, the MXB-imputed markers have a parameter called R2 to reflect the 

imputation performance (Fuchsberger et al., 2015). I defined an imputation quality 

threshold of R2 = {0.05, 0.1, 0.2, 0.3}. I removed variants in the panel that had a R2 value 

smaller than the four quality thresholds and estimated the four-imputation metrics using 

the retained variants. I computed the mean value for each imputation metric based on the 

retained variants for each of the four imputation quality thresholds. 

 

4.3. Population structure analysis for MXB-imputed data 
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I performed population structure analyses to ensure that the MXB-imputed data accurately 

maintains the genetic diversity of MXB. The purpose of these analyses is to compare the 

obtained results with the ones obtained for the MXB-genotyped data in Sohail et al., 2022.  

 For these and all the following analyses, I removed 224 individuals from the 

cohort that were categorized as related in Sohail et al. 2022. Therefore, the MXB-

imputed panel comprises 5,833 unrelated samples. 

4.3.1. Target 

I created a qc-ed version of the MXB-imputed data by keeping all sites with imputation 

quality greater than 0.05 (R2 > 0.05). I removed duplicated sites and restricted our analysis 

to bi-allelic sites in all autosomes. I also applied a Hardy-Weinberg equilibrium (HWE) 

filter of 1e-8 to account for batch effects, and a minor-allele frequency (MAF) filter of 0.005 

to remove rare variants. The qc-ed version of the MXB-imputed data has 9,219,234 SNPs 

and 5,833 samples. 

4.3.2. References 

I used reference samples for Africa (AFR), Europe (EUR) and America (AMR) from the 

1000 Genomes Project (1KGP) dataset. I selected 60 Yorubas (YRI) from Ibadan Nigeria 

as AFR, 60 Iberians (IBS) from Spain as EUR, and 27 Peruvians from Lima with more 

than 96% ancestry from the Americas as AMR. I removed indels and structural variants, 

multi-allelic sites and duplicated sites. I applied a HWE filter of 1e-3 to remove batch effects 

and a MAF filter of 0.005 to remove rare variants. The qc-ed reference dataset has 

15,821,810 variants and 147 samples. 

4.3.3. Merged File 

For the analysis of population structure, I merged the qc-ed MXB-imputed dataset and the 

qc-ed reference dataset using the bcftools (Danecek et al., 2021) merge function. This 

merged file is an intersection of the qc-ed MXB-imputed SNP positions and the SNP 

positions from the qc-ed reference dataset. The merged file comprises 8,129,767 SNPs 

and 5,980 samples. 

 I used the plink2 (Chang et al., 2015) command --indep-pairwise to produce a 

pruned subset of variants that are in approximate linkage disequilibrium (LD) with each 
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other. I created a LD-pruned version of the merged file by removing pairs of SNPs that 

have an LD value greater than 0.1 in windows of 50 SNPs. The LD-pruned merged dataset 

comprises 868,091 SNPs and 5980 samples. 

4.3.4. Principal component analysis (PCA) 

I performed two analyses of principal components (PCA). One was performed on the LD-

pruned merged dataset including all the samples (MXB-imputed and references), and the 

second was performed on the same dataset but including only MXB-imputed genomes. 

 I used smartpca from eigensoft (Patterson et al., 2006, Price et al., 2006) software 

to obtain both PCAs. 

4.3.5. ADMIXTURE 

I employed the ADMIXTURE (Alexander et al., 2009) software version 1.3 to estimate 

individual ancestry proportions for K = {3,4,5,6} number of clusters. I used the LD-pruned 

merged dataset to run ADMIXTURE. 

4.3.6. Local ancestry inference 

To estimate local ancestry along the MXB-imputed genomes, I used Gnomix (Hilmarsson 

et al., 2021). I trained Gnomix using the qc-ed reference dataset containing only the 

shared SNPs positions between the qc-ed MXB-imputed dataset and the reference 

dataset. I applied the default settings since they are optimal for whole-genome data and 

allowed Gnomix to re-phase the genomes using the predicted-local ancestry. I employed 

the trained model to infer local ancestry tracts for the MXB-imputed genomes. 

 I calculated genome-wide global ancestry proportions using a script created by 

myself. This script is based on an Alicia Martin script (Martin et al. 2017) to compute global 

ancestry proportions for a specific chromosome. 

4.3.7. Principal component analysis (PCA) for Indigenous MXB 

To further validate the reliability of the MXB-imputed data, I repeated the principal 

component analysis but considering only the 50 Indigenous MXB individuals that have 

imputed and whole-genome data. 
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 I extracted the 50 Indigenous MXB individuals from the LD-pruned merged dataset 

to apply smartpca from the eigensoft (Patterson et al., 2006, Price et al., 2006) software.  

 For the Indigenous MXB whole-genome data, I limited the dataset to have bi-allelic 

SNPs only in all autosomes. Then, I restricted the dataset to comprise only the SNPs 

positions that are present in the LD-pruned merged dataset. 351,877 variants are present 

in the whole genome-dataset and the LD-pruned merged dataset. I applied smartpca on 

the restricted dataset with 351,877 variants. 

4.4. Detecting archaic-introgressed segments in Mexico using SPrime 

I applied SPrime (Browning et al. 2018) to infer archaic-introgressed segments on MXB. 

The SPrime software detects variations in a target present-day population that are 

introgressed from an archaic source in the past. I used SPrime (Browning et al., 2018) 

since it is optimized for detecting introgression from Neanderthals and Denisovans in 

modern populations and is more accurate than previous methods (Browning et al., 2018). 

SPrime is reference-free and it is able to detect archaic introgression by comparing the 

target population to an outgroup. The outgroup must be a population that is not expected 

to contain introgressed variants. I used the 108 YRI from Ibadan Nigeria in the 1000 

Genomes Project dataset because they are thought to have no direct admixture from 

Neanderthals (Green et al. 2010). 

 The SPrime software requires a Variant Call Format (VCF) file with genotypes for 

all autosomes and samples. Both target and outgroup samples must be in the input VCF 

file. 

4.4.1. SPrime on Indigenous MXB 

I tested SPrime performance on the Indigenous MXB individuals that have both imputed 

and whole-genome data. 

 For the Indigenous-MXB whole genome data, I created a target dataset that 

contains bi-allelic sites in all autosomes and no monomorphic sites. I removed SNPs with 

a missing genotype rate below 0.05. 

 For the Indigenous MXB-imputed data, I created a target dataset by removing all 

markers with imputation quality less or equal to 0.05. I restricted the dataset to bi-allelic 
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sites in all autosomes and removed all monomorphic sites. I applied a Hardy-Weinberg 

equilibrium (HWE) filter of 1e-8 to account for batch effects. 

 For the outgroup, I extracted the 108 Yoruba (YRI) samples from the 1000 

Genomes Project (1KGP). I removed multi-allelic sites and indels or structural variants. 

 Then, I merged the target and the outgroup datasets using the bcftools merge 

function. I named the merged files as 1) Indigenous MXB-Real Genomes + YRI and 2) 

Indigenous MXB-Imputed Genomes + YRI. Both merged files are the intersection of the 

target SNP positions and the SNP positions from the outgroup dataset. The Indigenous 

MXB-Real Genomes + YRI dataset has 6,972,338 variants and the Indigenous MXB-

Imputed Genomes + YRI has 6,517,652 variants. 

4.4.2. SPrime on MXB-imputed 

For the MXB-imputed genomes, I created a dataset containing only bi-allelic sites in all 

autosomes and no monomorphic sites. 

 For the outgroup, I extracted the 108 Yoruba (YRI) samples from the 1000 

Genomes Project and removed multi-allelic sites and indels or structural variants. 

 I computed the intersection between the MXB-imputed SNP positions and the 

outgroup SNP positions to obtain the shared sites between datasets. I subsetted both 

datasets to contain only the shared sites between them and merged them using the 

bcftools (Danecek et al., 2021) merge function. I named the merged file as MXB-Imputed 

Genomes + YRI. This file comprises 31,355,288 SNPs. 

4.4.3. SPrime description 

SPrime (Browning et al., 2018) requires a PLINK format genetic map with cM units to 

estimate genetic positions between map positions. I downloaded the HapMap genetic 

maps in GRCh37 and concatenated them to have a whole-genome PLINK format genetic 

map. 

 I runned SPrime in the three different merged datasets: 1) the Indigenous MXB-

Real Genomes + YRI dataset, 2) the Indigenous MXB-Imputed Genomes + YRI dataset, 

and 3) the MXB-Imputed Genomes + YRI dataset. 
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4.4.4. Calculate match rates to a sequenced archaic-genome 

Since SPrime (Browning et al., 2018) is a reference-free method, it is possible to use a 

relevant archaic genome that has been sequenced to map the detected archaic-variants 

to the archaic genome of interest to confirm the source of introgression. I used the genome 

of the Altai Neanderthal and the genome of the Altai Denisovan from Prüfer et al. 2017 to 

represent two possible sources of archaic introgression. 

 Each variant detected by SPrime can be mapped to the archaic genome, resulting 

in a match, mismatch or not comparable to the archaic genome. Each state represents 

that the detected variant is present in the archaic genome, is not present in the archaic 

genome and is not comparable to the archaic genome because genotype quality is low 

for that locus or it has poor mappability. To do this, I used the map_arch script created by 

Y Zhou’s script (Zhou et al., 2021). This script reads in SPrime output and returns the 

match status for each detected variant. 

 After obtaining the match status for each archaic-introgressed variant detected by 

SPrime, I calculated the match rate for each reported introgression segment (i.e., sets of 

alleles). The match rate for each segment detected by SPrime is the number of matching 

positions divided by the sum of matching and mis-matching positions. Match rate is 

undefined if there are no variants that can be comparable to the archaic genome in the 

segment (i.e., all variants in the segment are non-comparable to the archaic genome). 

This is helpful to detect variants that are likely to be false-positives. (Browning et al., 2018) 

 I modified Y Zhou’s script to compute the match rate to obtain the number of total 

variants detected by the segment, and the number of variants matching the Neanderthal 

or Denisovan genomes. 

 Contour plots were created using Y Zhou’s script and the MASS package in R. 

4.5. Genomic regions with archaic ancestry 

To define genomic regions with Neanderthal or Denisovan ancestry, I used the segments 

identified by the SPrime run on the MXB-Imputed Genomes + YRI dataset. To isolate 

regions with Neanderthal or Denisovan ancestry, I considered segments that have 1) at 

least 30 putatively archaic-introgressed variants that could be comparable to the Altai 
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Neanderthal or Altai Denisovan genome and 2) had a match rate of at least 30% to the 

Altai Neanderthal or Altai Denisovan allele. (Browning et al. 2018) I used this stringent set 

of archaic-matching segments for the following analysis. 

4.5.1. Distribution of archaic-introgression in Mexico 

To better understand the distribution of archaic-introgression across Mexico, I count the 

number of archaic-variants that each individual in MXB has. For doing so, I used the 

archaic_snps_perind_sprime.py script created by Kelsey-Witt (Witt et al., 2023) to count 

the number of sites with archaic-SNPs, and the total number of archaic SNPs for each 

individual, using the SPrime calls to define archaic sites. 

 Witt’s script uses the SPrime archaic calls to define archaic SNPs and counts the 

total number of archaic SNPs for each individual. This script can examine different sets of 

archaic SNPs. I analyzed archaic-SNPs detected by SPrime that were Altai Neanderthal 

unique, Altai Denisovan unique and either Altai Neanderthal or Altai Denisovan (all archaic 

alleles). 

 I used MXB panel information to group individuals by state to better understand the 

distribution of the total number of archaic SNPs for individuals across Mexico. 

 I used the genome-wide ancestry proportions to compute the correlation between 

percentages of African (AFR), European (EUR), and American (AMR) ancestry and count 

of sites with archaic alleles. 

              

All scripts needed to reproduce this work are deposited on GitHub: 

https://github.com/vagaribay/archaic-segments-MXB. 

https://github.com/vagaribay/archaic-segments-MXB
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6. Supplementary Figures 
              
 

 

 

Supplementary Figure 1. Relationship between imputation accuracy, R2, and the averaged metric for all 

SNPs in all autosomes. A) Genotype accuracy. B) Heterozygotic precision. C) Homozygotic precision. 

 

 

Supplementary Figure 2. Principal component analysis (PCA) plots of a panel of 868,091 LD-pruned 

SNPs. Individuals are color-coded by population (archeological region). Results shown are from MXB-

imputed data. A) PC1 vs PC3. B) PC2 vs PC3. 
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Supplementary Figure 3. The number of sites with Altai Neanderthal-specific alleles found in 1,411 

segments detected by SPrime in 5,833 MXB individuals. Individuals are grouped according to their sampling 

location. Color coding is by archeological region. Boxplots represent the distribution of the number of sites 

with archaic alleles for each state. 
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Supplementary Figure 4. The number of sites with Altai Denisovan-specific alleles found in 1,411 

segments detected by SPrime in 5,833 MXB individuals. Individuals are grouped according to their sampling 

location. Color coding is by archeological region. Boxplots represent the distribution of the number of sites 

with archaic alleles for each state. 

 


