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Levels of genetic and possibly phenotypic variation are influenced by how natural 

selection acts to change the frequency of deleterious and advantageous mutations. 

However, the demographic history of a population influences the efficacy of natural 

selection to keep deleterious variants at low frequencies and to raise the frequency of 

advantageous mutations. I present three projects where we study how natural selection 

works in the context of different demographic histories. On the first project, I study the 

early demographic history of dogs and wolves since their divergence using genomic 

data from three dogs and three wolves. I inferred population bottlenecks in dogs and 

wolves and I found evidence for gene flow between dogs and wolves after their 

divergence. I develop a summary statistic to find the most plausible demographic model 

for dogs and wolves, where I found evidence for a demographic model stating that dogs 

evolved from one single location. This project laid the foundations to study how 

advantageous and deleterious variants work in the context of the bottlenecks found in 

dogs and wolves. On the second chapter, I study how population bottlenecks and 

inbreeding have influenced levels of deleterious genetic variation in dogs using 90 

whole-genome sequences from breed dogs, village dogs and gray wolves. I used the 

ratio of heterozygosity at amino-acid changing variants over silent variants to show how 

bottlenecks associated with domestication and breed formation in dogs have affected 



	
   

the efficacy of negative selection. I show multiple lines of evidence indicating that 

bottlenecks, and not inbreeding, are driving the patterns of deleterious genetic variation 

we observed in dogs. On the third project, I develop a novel likelihood-based method 

that uses the lengths of pairwise haplotype identity by state among rare-variant carrying 

haplotypes. The method conditions on the present-day frequency of the allele and is 

based on theory predicting that, under constant population sizes, the alleles under 

negative selection are on average younger than neutral alleles and should have higher 

average levels of haplotype identity among variant carriers. We developed a 

computational framework to obtain the probability distribution of the lengths of pairwise 

haplotype identity given a certain selection coefficient, demographic scenario and 

present-day allele frequency. Simulations indicate that our method provides unbiased 

estimates of selection under constant population sizes and realistic demographic 

scenarios. We show how our method can also be used to estimate the parameters that 

define the distribution of selective coefficients of a set of rare variants. We provide an 

example of how to apply this method to estimate the distribution of selective coefficients 

of a set of amino-acid changing variants in the UK10K, a large genomic dataset of 

British individuals. 
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Introduction 
 

One of the most important problems in evolutionary biology is to understand what 

processes are maintaining the genetic variation observed within different species. A 

fundamental process affecting levels of genetic variation is the continuous input of new 

mutations every generation. These new mutations can be neutral, deleterious or 

advantageous. A neutral mutation does not affect the fitness of the individual. On the 

other hand, the fitness of an individual is decreased or increased by the action of 

deleterious and advantageous mutations, respectively. Levels of genetic diversity are 

affected by how natural selection is acting against these mutations. If mutations are 

advantageous, then natural selection will increase their frequency in the population. On 

the contrary, natural selection acts against deleterious mutations to decrease their 

frequency in the population. 

A long-standing topic of interest has been to quantify the proportion of mutations that 

have a particular fitness effect value, going in a continuum from strongly advantageous 

to strongly deleterious. That information is commonly summarized in a continuous 

distribution called the distribution of fitness effects (DFE) of new mutations. 

Understanding the properties and shape of the DFE has been a topic of particularly 

fierce debate during the introduction of the neutral theory of molecular evolution. 

According to the neutral theory, the majority of new mutations are either deleterious or 

neutral, with advantageous mutations appearing rarely in the population. Since 

deleterious mutations are removed from the population and advantageous mutations do 

not appear often, the neutral theory holds that the majority of the genetic variation 

observed is due to neutral mutations. The importance and validity of the neutral theory 



	
   

continues to be questioned nowadays. In the first section of the introduction, I will 

introduce the neutral theory of molecular evolution along with the related nearly neutral 

theory of molecular evolution. I will discuss evidence arguing against and in favor of 

those two theories. 

In the second section, I will also review the importance of the interaction between past 

demographic history and the fitness effects of new mutations to define levels of genetic 

variation in a population. 

Since past population history exerts an important influence on levels of genetic variation 

at neutral sites and under selection, it is crucial to infer it as accurately as possible. The 

recent availability of large-scale genomic datasets has fueled a lot of interest in the 

development of new methods to more accurately infer past demographic history. In the 

third section of my introduction, I will discuss these methods along with their strengths 

and disadvantages. 

In the fourth part of this introduction, I will discuss modern approaches to estimate the 

distribution of fitness effects in a population. I will point out what are their main 

assumptions, advantages and disadvantages. 

In the last part of this introduction, I will give a brief roadmap describing the content from 

each chapter of this dissertation. 

 

1.1 Neutral theory and nearly neutral theory of molecular evolution 
 

The neutral theory of molecular evolution was formally introduced in two papers (Kimura 

1968; King & Jukes 1969). First, Motoo Kimura argues that the average amino-acid 

substitution rate in three proteins, one substitution every 2 years, was consistent with 



	
   

the majority of the substitutions being ‘almost neutral’. He makes that conclusion based 

on an estimate made by Haldane that no more one substitution per 300 generations 

should be expected to not create an untolerable genetic load (Haldane 1957). Although 

King and Jukes challenge Motoo Kimura’s genetic load argument, they support the idea 

that the estimated substitution rates in proteins are fast and are more in line with 

substitutions being neutral. Based on estimates of the rate of appearance of slightly 

deleterious and recessive lethal mutations from (Mukai 1964; Whitfield et al. 1966), King 

and Jukes estimate that 80 to 90 percent of spontaneous mutations are mildly 

deleterious, 5 to 10 percent are lethal and 5 to 10 percent are selectively neutral. King 

and Jukes’s paper is also remarkable because it was the first one to note that there are 

functional constraints on different sites or proteins affect the substitution rate, where a 

higher functional constraint reduces the substitution rate (Ohta & Gillespie 1996). 

The neutral theory of molecular evolution was heavily contested when it was presented 

(Ewens 2012). This was due to prevailing views on molecular evolution at the time 

holding that most of the amino acid substitutions must be under selection. Codon usage 

biases and a different rate of amino-acid substitutions between different amino-acids, 

based on the PAM amino-acid substitution matrix from Margaret Dayhoff, were 

mentioned as counter-evidence for the neutral theory by (Richmond 1970; Clarke 1970). 

A fair balance of the debate was presented in (Crow 1972), where he also points out 

some testable hypothesis from the neutral theory. He states that, under neutrality: 1) 

The mutation rate should be equal to the substitution rate; 2) Levels of heterozygosity 

should be related to the mutation rate and effective population size following this 

formula 𝐻 = 4𝑁𝑢
1+ 4𝑁𝑢 from (Kimura & Crow 1964) ;  3) That the frequencies of 



	
   

different alleles should be dependent on the mutation rate and effective population size, 

and could be used to test neutrality employing Ewens sampling formula (Ewens 1972). 

An important modification from the nearly neutral was the nearly neutral developed by 

Tomoko Ohta (Ohta 1973). Ohta proposes that the neutral theory could be extended to 

include the fixation of slightly deleterious mutations. This class of mutations could 

become fixated in small populations and, therefore, we should expect to see a negative 

correlation between the substitution rate and the population sizes between species. The 

main differences between the proportion of mutations in different categories is illustrated 

in Figure 1.1 (taken from (Ohta 1992). The core of the neutral theory is that the vast 

majority of mutations we observe, both within and between species, are neutral. 

Deleterious mutations are rarely observed because selection acts against them. 

Advantageous mutations do not appear often in the population and, therefore, they are 

rarely observed. In the nearly neutral theory, mutations can be slightly beneficial or 

slightly deleterious and can contribute to the number of substitutions and 

polymorphisms observed. 

 

 

Figure 1.1.- Classification of new mutations in the simple neutral theory and nearly 

neutral theory. Figure taken from (Ohta 1992).  
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Later in the 1970s, Kimura and Ohta described more testable hypothesis from the 

neutral and nearly neutral theory (Kimura & Ohta 1974), including predictions stating 

that: 1) The rate of evolution for proteins should be constant, as long as the function of 

the protein is unaltered; 2) Less functional parts of a protein should have a higher 

substitution rate; 3) Mutant substitutions that disrupt less the existing structure and 

function of a molecule occur more frequently. Finally, they state that the neutral theory 

predicts that selective elimination of deleterious mutations and fixation of neutral or 

slightly deleterious mutations occur much more frequently than positive selection of 

advantageous mutations. 

The neutral and nearly neutral theory of evolution was contested again due to the 

observation of differences in heterozygosity smaller than one order of magnitude in 

species with presumably large differences in population sizes (Lewontin 1974), 

inconsistent with the relationship between heterozygosity and population sizes in neutral 

sites found by (Kimura & Crow 1964). This problem has been revisited recently (Leffler 

et al. 2012). An important contribution to this subject was made by Maynard Smith and 

Haigh, who propose that the hitchhiking of neutral alleles with genomic regions 

experiencing selection could reconciliate the heterozygosity levels observed with the 

differences in population sizes (Maynard Smith & Haigh 1974). 

The development of the neutral theory relied on information from protein sequences. 

This changed during the late 70’s due to the development of new methods to sequence 

DNA and RNA (Sanger & Coulson 1975; Sanger et al. 1977; Maxam & Gilbert 1977). 

This provided further evidence for the neutral and nearly neutral theory. Synonymous 



	
   

sites were found to have higher substitution rates compared to nonsynonymous sites in 

b-hemoglobins (Jukes 1978). This agrees with one principle from the neutral and nearly 

neutral theories stating that less functional parts of a protein have higher substitution 

rates. Linked to this principle, non-functional pseudogenes of the alpha-globin gene 

were found to have high substitution rates compared to functional forms of that same 

gene (Miyata & Yasunaga 1981). 

The nearly neutral theory became widely accepted by the end of the 1980’s. However, 

some of its assumptions continued to be questioned. One of the questioned 

assumptions is the constancy of selection coefficients over long periods of time (Ohta & 

Gillespie 1996). A strong criticism came from the estimated ratio of the variance of 

amino-acid substitution rate over the mean amino-acid substitution rate among 

lineages, which could be better explained by periods of changing substitution rates 

instead of the constant substitution rate predicted by the neutral theory (Gillespie 1984). 

Another revolutionary advance done during the 1980’s was done by Martin Kreitman’s 

analysis of eleven copies of the Adh gene in Drosophila melanogaster (Kreitman 1983). 

This represents the first investigation using DNA trying to understand what evolutionary 

forces are driving the genetic variation observed inside a species. This advance also 

made possible to test for signals of selection using neutrality tests. One caveat of these 

neutrality tests, and any other neutrality test, is that they are affected by demography. 

One of the first neutrality test developed is the McDonald-Kreitman test, which tests for 

differences in the ratio of synonymous/nonsynonymous substitutions against the ratio of 

synonymous/nonsynonymous polymorphism as an evidence for neutrality  (McDonald & 

Kreitman 1991). This test was shown later to be affected by changes in population size 



	
   

(Eyre-Walker 2002). Fumio Tajima also developed the D statistic, which can test for an 

excess of low frequency variants as evidence for selection (F Tajima 1989). However, 

since a high proportion of low frequency variants can also be found due to a population 

expansion (F. Tajima 1989), care must be taken when interpreting the results of the D-

statistic. We will return to the topic of how to take demography into account when 

studying selection in later sections of this introduction. 

The neutral theory has continued to be criticized in subsequent decades. The problem 

with the lack of a consistent substitution rate across lineages, also called a constant 

molecular clock, has still been used as evidence against the neutral theory (Kreitman 

1996). Another three additional observations done in the genus Drosophila not 

consistent with the neutral theory are: 1) The negative relationship between 

polymorphism and divergence; 2) The positive relationship between polymorphism and 

recombination and 3) Regional similarity in levels of polymorphism (Hahn 2008; Sella et 

al. 2009). 

If the neutral or nearly neutral theory are true, we would expect to see a distribution of 

fitness effects of new mutations composed on its majority of neutral or nearly neutral 

mutations along with deleterious mutations. We would also expect to see that the 

distribution of fitness effects of segregating polymorphisms is mostly composed of 

neutral mutations. The problem of inferring the DFE of new mutations has been 

attacked before (more on that and the importance of the DFE of new mutations for other 

fundamental biological problems on section 1.4), while the problem of inferring the DFE 

of segregating mutations has been less studied (but see (Racimo & Schraiber 2014)). 

Chapter 4 of this dissertation in part will be devoted in part to develop methods to 



	
   

estimate those two distributions. To infer those two distributions we must utilize 

information from genetic variation, where that information is also affected by the 

demographic history of a population. I will expand on this topic on the next section. 

 

1.2 Interaction between selection and demography 
 

When selection is acting on a mutation, the two types of selection that are more 

prevalent are positive selection and negative selection. Positive selection increases the 

frequency of an advantageous mutation. Negative selection decreases the frequency of 

a deleterious mutation. We can define the fitness of an individual containing the 

genotypes A1A1, A1A2 and A2A2 as 1, 1+s and 1+2s, respectively. Based on these 

definitions, if the selection coefficient s > 0 then the mutation is under positive selection 

while if s < 0 then the mutation is under negative selection. The efficiency of selection to 

act on the advantageous and deleterious mutations depends on the product of the 

effective population size N and the selection coefficient s. Due to this, many important 

summary statistics of genetic variation and other properties of an allele are a function of 

Ns. Exact formulas for some of these summary statistics and properties have been 

derived under a demographic model of a panmictic constant population size. Assuming 

additive effects, some properties that are a function of Ns are the fixation probability of a 

mutation u(p) (Kimura 1962), the age of an allele (Maruyama 1974), and the average 

time to fixation (Kimura 1980). The most important summary statistic of genetic 

variation, the site frequency spectrum, is also a function of Ns (Sawyer & Hartl 1992; 

Bustamante et al. 2001). 



	
   

Sites under both positive and negative selection affect the variation on linked neutral 

and nearly neutral sites, and the magnitude of this effect is also dependent on past 

demographic history. When sites under positive selection, variation is reduced at linked 

neutral sites, a phenomenon called ‘hitchhiking’ (Maynared Smith & Haigh 1974; 

Gillespie 2000). The levels of diversity in the linked neutral sites are dependent on the 

population size when there is a single allele that raises in frequency fast in the 

population (Charlesworth & Charlesworth 2010), as well as in other models where there 

is recurrent selection on a particular site on different time points (Coop & Ralph 2012). 

Sites under negative selection also reduce the genetic variation at linked neutral sites, a 

phenomenon known as background selection. The reduction in genetic variation is also 

dependent on the effective population size. This has been calculated in a model without 

recombination events (Charlesworth et al. 1993) and in models with recombination 

events (Hudson & Kaplan 1995; Nordborg et al. 1996; Nordborg 1997). This points out 

once again the importance of demography in defining the efficiency of selection, both at 

the site under selection and at the linked neutral variation. 

Analytical results to describe the genetic variation at sites under selection and at linked 

sites are only available for panmictic populations. However, most of the model species 

have non-equilibrium demographic scenarios. We must understand how genetic 

variation, both at sites under selection and linked neutral sites, is reduced in these 

demographic scenarios to be able to pursue two major objectives: Detect regions with 

genes under positive selection and to understand how deleterious variation changes 

due to different demographic events. Many efforts have been devoted recently to solve 

those two problems. 



	
   

Efforts to understand how demography can change genome-wide diversity patterns 

and, therefore, our ability to detect regions with genes under positive selection have 

been carried out for different non-equilibrium scenarios. Those scenarios include 

bottlenecks and population subdivision (Pavlidis et al. 2010; Santiago & Caballero 2005; 

Jensen et al. 2005; Crisci et al. 2013; Barton 2000; Slatkin & Wiehe 1998). One of the 

projects where I was involved in found regions under positive selection in dogs and 

wolves, where we have both the effects of bottlenecks and population subdivision 

(Freedman et al. 2016). To do that project, we first needed to understand the 

demographic history of dogs and wolves. In Chapter 2, I describe the demographic 

analysis I performed to understand population size changes and migration rates in dogs 

and wolves. 

The efficiency of selection to remove deleterious variants in non-equilibrium scenarios 

has received considerable attention recently (Brandvain & Wright 2016; Gravel 2016), 

particularly due to an interest in knowing whether recent demographic events involving 

reductions in population size can increase deleterious genetic variation. Some summary 

statistics lack power to measure if there has been an increase in deleterious genetic 

variation due to recent demographic events. Therefore, it is critical to carefully choose 

an appropriate summary statistic (Lohmueller 2014a). In Chapter 3, I will describe an 

investigation on patterns of deleterious genetic variation in dogs and wolves using a set 

of summary statistics that are sensitive to changes in deleterious genetic variation. 

Dogs and wolves are a great system to study patterns of genetic variation due to our 

knowledge on the timing and strength of bottlenecks in dogs, partly due to the work I 

describe in Chapter 2. 



	
   

To be able to investigate patterns of genetic variation on sites under selection in non-

equilibrium scenarios, we require a demographic model that is informed from genetic 

and historical data. In the next section of the data I will discuss recent approaches to 

infer a demographical model using genomic data. 

 

1.3 Inference of demography using genome-wide scale data 
 

Many ingenious approaches to infer past demographic history have been developed 

due to an increase in studies containing genome-wide data from many individuals. 

Some of the methods rely on the SMC (McVean & Cardin 2005) or the SMC’ model 

(Marjoram & Wall 2006), which are highly accurate approximations to the ancestral 

recombination graph ARG, particularly the SMC’ model (Wilton et al. 2015), that can 

facilitate the inference of demographic parameters of interest. The genealogical history 

across all sites in a chromosome is contained in the data structure known as the ARG. 

The main idea behind the SMC and SMC’ models is that we: 

1) Start with a random genealogy G0 generated by the coalescent process at the left side of 

the chromosome with total branch length T0. 

2) Generate a random number that follows an exponential distribution with rate ρT0. This is 

the distance to the next place where there has been a change in the local genealogy Gi. 

3) Select a random place x uniformly in the genealogy.  

4) Under the SMC coalescent: At the point x, create two branches (left and right) that will 

go towards the past. Delete the left branch, therefore eliminating that lineage. Then 

make the right side of the branch coalesce according to the usual coalescent 

probabilities anywhere up in the genealogy, including possibly coalescing farther away 

than the MRCA. 



	
   

Under the SMC’ coalescent: At the point x, create two branches (left and right) that will 

go towards the past. Make the right side of the branch coalesce according to the usual 

coalescent probabilities anywhere up in the genealogy, including possibly coalescing 

farther away than the MRCA. Then delete the left branch. 

5) Go back to 2 and repeat until you reach the end of the sequence. 

The main difference between the SMC and the SMC’ model is that one more coalescent 

event is taken into account in the SMC’ model, the possibility of the right branch 

coalescing with the left branch before deleting the left branch. An illustration with the 

main idea behind the SMC models is shown in Figure 1.2. 

 

Figure 1.2.- A graphical illustration of the SMC algorithm taken from (McVean & Cardin 

2005).  

 

By providing an accurate approximation to the ARG, both the SMC and the SMC’ model 

can be used to simulate sequence data that mimics patterns of genetic variation 

generated by the ARG (Chen et al. 2009) and to infer past demographic history. The 

first SMC model-based genome-wide scale method to infer past population sizes was 

PSMC (Li & Durbin 2011a). PSMC takes information from one single unphased genome 

and infers past population size changes under the assumption that all of its past history 

can be explained in terms of one panmictic population. Extensions developed later in 

the program MSMC use the SMC’ model and take phased genomic data from many 



	
   

individuals to estimate changes in population size and changes of the between and 

within coalescence rate (Schiffels & Durbin 2014). Additionally, information from the 

distribution of identity by state lengths combined with the SMC and SMC’ models have 

been used to estimate past population size changes (Harris & Nielsen 2013). 

Methods that rely on models different to the SMC and the SMC’ have also been 

developed. Due to the development of tools that estimate the ARG in genomic data 

(Rasmussen et al. 2014), new demographic inference methods that employ the inferred 

ARG have been developed (Palacios et al. 2015).  The sequentially Markov conditional 

sampling distribution SMCSD (Paul et al. 2011) has also been employed to infer past 

demographic history (Sheehan et al. 2013). Under the SMCSD, it is possible to 

calculate the probability of observing a certain haplotype given a set of other haplotypes 

and a particular demographic history. With this approach, it is possible to use a “leave-

one-out” approach, where each of the haplotypes is left out in turn, and employ the 

SMCSD to calculate the full likelihood of the data given a particular demographic 

history. 

Another popular model to infer past demographic history is the Poisson Random Field 

model PRF (Sawyer & Hartl 1992), where it is a assumed that mutations are 

independent from each other, always occur at a new site and each mutation follows an 

independent Wright-Fisher process. fastNeutrino (Bhaskar et al. 2015) infers past 

demographic events employing the PRF model, the coalescent model and information 

from the site frequency spectrum SFS, a summary statistic that displays the number or 

proportion of alleles at different frequencies in the population. Information from the SFS 

has also been employed to infer past demographic history employing a diffusion-based 



	
   

composite likelihood approach (Gutenkunst et al. 2009) or a coalescent approach that 

estimates the composite likelihood of different models using simulations (Excoffier et al. 

2013). 

On the other hand, the program GPhoCS employs a standard coalescent model and a 

Bayesian method to infer the past demographic history employing genomic data from a 

set of individuals (Gronau et al. 2011a). GPhoCS uses information from a large number 

of genealogies from short neutral loci to get samples from the posterior distribution of 

demographic parameters that define past population sizes, migration rates and 

divergence times between a set of sampled genomes. 

In Chapter 2 I explain my efforts to reconcile information from the two demographic 

approaches that were available at the time we published the paper based on that 

chapter, PSMC and GPhoCS, using genomic data from dogs and wolves. I develop a 

simple summary statistic that finds the best demographic model that explains the data. I 

also show that the demographic model is also concordant with patterns of gene flow 

detected using the D-statistic, which tests for asymmetries in the number of derived 

alleles between a source lineage (P3) and one of two other lineages (P1, P2) (Green et 

al. 2010; Durand et al. 2011). 

 

1.4 The interaction between demography and the distribution of fitness effects 
 

The distribution of fitness effects is one of the most important determinants of Evolution 

(Eyre-Walker & Keightley 2007). Apart of its importance to the neutral theory and to 

determine current levels of genetic variation, it is also relevant to understand current 

phenotypic variation, since the distribution of fitness effects can influence the evolution 



	
   

of complex phenotypic traits (Lohmueller 2014b; Mancuso et al. 2015; Eyre-Walker 

2010).  

The Poisson Random Field model PRF is the framework currently employed to estimate 

the distribution of fitness effects. When the PRF model was proposed, it was used to 

estimate the strength of selection acting in the Adh gene using information from the 

number of substitutions and polymorphisms at synonymous and nonsynonymous sites 

(Sawyer & Hartl 1992). The use of polymorphism and divergence data coupled with 

inference under the PRF model allows the detection of even very weak selection 

(Akashi 1999) and has been successfully applied to infer selection in other species. 

Some examples of this are one study that found the distribution of selective coefficients 

on different genes in humans (Bustamante et al. 2005), and another one finding that, in 

a small set of genes, Arabidopsis tended to have a higher proportion of genes under 

negative selection compared to the higher proportion of genes under positive selection 

found in Drosophila (Bustamante et al. 2002). 

In their foundational paper (Sawyer & Hartl 1992), Sawyer and Hartl also showed how 

the site frequency spectrum is affected by different strengths of selection under the PRF 

model. We show an example of how natural selection affects the site frequency 

spectrum in Figure 1.3, negative selection acts against deleterious alleles to keep them 

at low frequencies in the population. On the other hand, positive selection increases the 

frequency of advantageous alleles. The power of the site frequency spectrum to detect 

selection has been further analyzed, particularly when the assumption of having 

completely independent sites of the PRF model is violated (Bustamante et al. 2001). 

Violations to this assumption cause misleading estimates of selection. However, use of 



	
   

the site frequency spectrum from many sites across the genome causes the sites to be 

more independent from each other and therefore provide a better estimate of selection, 

as seen in (Adam R Boyko et al. 2008a). Methods to estimate the distribution of 

selective coefficients using the site frequency spectrum and the PRF framework have 

been recently developed (Keightley & Eyre-Walker 2007; Adam R Boyko et al. 2008a; 

Loewe et al. 2006). The method from (Loewe et al. 2006) does not model past 

demographic events while the method of (Keightley & Eyre-Walker 2007) has the 

disadvantage that it only allows one population size change. On the other hand, (Adam 

R Boyko et al. 2008a) models more complicated demographic scenarios. The method 

first infers the demographic history using the site frequency spectrum at synonymous 

sites and then employs a likelihood-based method to find the parameters that better 

explain the site frequency spectrum at synonymous sites, based on the expected 

number of mutations 𝐸 𝑋!|𝑔(𝛾)  at different frequencies given a distribution of selection 

coefficients: 

𝐸 𝑋!|𝑔(𝛾) =
𝜃
2

𝑛
𝑖 𝑥! 1− 𝑥 !!!𝑓 𝑥;Θ, 𝛾 𝑔 𝛾 𝑑𝑥𝑑𝛾

!

!

!

!!

 

𝐿𝐿 𝑔(𝛾) = 𝐸 𝑋!|𝑔(𝛾)
!!!

 

Where 𝜃 is the genome wide mutation rate, n is the number of chromosomes, x is 

unknown frequency of the mutation, 𝑓 𝑥;Θ, 𝛾  is the probability of having a frequency x 

given a demographic history Θ and a selection coefficient 𝛾, 𝑔 𝛾  is the distribution of 

selection coefficients and 𝐿𝐿 𝑔(𝛾)  is the likelihood of the distribution of selection 

coefficients. 



	
   

Current methods to infer the distribution of fitness effects of new mutations do not 

leverage linkage disequilibrium patterns in the data and only indirectly infer the 

distribution of fitness effects of segregating variants. In Chapter 4 I propose a method 

that takes into account the demographic history and the patterns of linkage 

disequilibrium to infer the distribution of fitness effects of variants at particular 

frequencies in the population. This method uses the information from the large number 

of variants at low observed frequency and can differentiate between negative and 

positive selection under certain realistic demographic scenarios. The application of this 

method is only feasible now thanks to the large-scale genomic dataset that are available 

now. Under the assumptions of the neutral theory, the distribution of segregating 

variants at low frequencies should be majorly neutral or nearly neutral. 

 

Figure 1.3.- Site frequency spectrum of alleles under selection. Notice how negative 

selection acts against deleterious alleles to increase the percent of alleles at low 



	
   

frequency. On the other hand, positive selection increases the percent of alleles at 

higher frequency in the population. 

 

1.5 Roadmap 
 

This dissertation is divided into three different chapters, all unified into the common 

theme of understanding how past demographic history and natural selection act 

together to change levels of genetic variation. 

In Chapter 2, I analyze patterns of gene flow and past population size changes in the 

early demographic history of dogs and wolves using genomic data from 3 wolves and 3 

dogs. I inferred past population sizes and patterns of gene flow in both dogs and 

wolves. I show that the data is consistent with a demographic model that contains a 

single domestication event in dogs. 

In Chapter 3, I present an analysis of how domestication bottlenecks have affected 

genetic variation on deleterious sites in dogs using genomic data from 71 dogs and 19 

wolves. This investigation includes the development of the simulation software 

PReFerSim to analyze how past demographic history impact patterns of genetic 

variation at neutral and selected sites. 

In Chapter 4, I introduce a new method that uses patterns of linkage disequilibrium to 

infer the distribution of fitness effects acting on a set of variants at a particular frequency 

in the population. To my knowledge, this is the first method that uses haplotypic 

information to infer the distribution of fitness effects. I show an application of this 

method to the UK10K dataset, which contains around 4,000 whole-genome sequences 

of individuals sampled from England. 



	
   

  



	
   

Inferring the dynamic early history of dogs and wolves 
 

This chapter explains my contributions to the following paper: 

 

Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E, Silva PM, 

Galaverni M, Fan Z, Marx P, Lorente-Galdos B, Beale H, Ramirez O, Hormozdiari F, 

Alkan C, Vilà C, Squire K, Geffen E, Kusak J, Boyko AR, Parker HG, Lee C, Tadigotla 

V, Wilton A, Siepel A, Bustamante CD, Harkins TT, Nelson SF, Ostrander EA, Marques-

Bonet T, Wayne RK, Novembre J. Genome sequencing highlights the dynamic early 

history of dogs. PLoS genetics. 2014;10(1):e1004016. 

 

Introduction 
 

To advance the understanding of dog origins and genetic changes early in dog 

domestication, we sequenced the genomes of six canid individuals, including three 

wolves (Canis lupus), an Australian Dingo, a Basenji and a golden jackal (Canis 

aureus). The three wolves sequenced were chosen to represent the broad regions of 

Eurasia where domestication is hypothesized to have taken place (Europe, the Middle 

East, and East/Southeast Asia) (Larson et al. 2012), and specifically, were sampled 

from Croatia, Israel, and China. Further, we sampled the Dingo and Basenji because 

relative to the reference Boxer genome, they are divergent lineages (Vonholdt et al. 

2010) and maximize the odds to capture distinct alleles present in the earliest dogs. 

These lineages are also geographically distinct, with modern Basenjis tracing their 

history to hunting dogs of western Africa, while Dingoes are free-living semi-feral dogs 



	
   

of Australia that arrived there at least 3500 years ago (Fig. 2.1) (Savolainen et al. 2004). 

As a result of their geographic isolation, the natural range of wolves has never extended 

as far south as the geographic sources for these two dog lineages (Larson et al. 2012), 

thus they are less likely to have overlapped with and admixed with wolves in the recent 

past. Sequencing the golden jackal allowed us to identify the ancestral state of variants 

arising in dogs and wolves.  

 

Figure 2.1.- Geographic distribution of sampled lineages 

 

We chose to sequence a smaller number of individual genomes to high 

coverage, rather than larger numbers of individuals at low coverage, to take advantage 

of recently developed demography inference methods based on single high quality 

genomes (Durand et al. 2011; Gronau et al. 2011b; Li & Durbin 2011b). These methods 

allowed us to disentangle the effects of incomplete lineage sorting (ILS) and post-

divergence gene flow, which pose a particular challenge in analysis of such recently 

diverged species as dogs and wolves (Larson & Burger 2013). Combining the results of 

observed in dogs relative to wolves can be superficially interpreted to
reflect a relatively weak two-fold reduction in effective population
size of dogs relative to their ancestors, assuming that genetic
variation in modern wolves is representative of the ancestral
population.

To better understand the changes in ancestral population sizes
that influenced dogs and wolves, we employed the pairwise
sequential Markovian coalescent (PSMC) method [20]. This
method infers ancestral effective population sizes (Ne) over time,
based on a probabilistic model of coalescence with recombination
and changes in heterozygosity rates along a single diploid genome.
We applied PSMC to each of the five genomes (Figure 3B, Text
S8) and converted the mutation-scaled estimates of time (to years)
and population size (to numbers of individuals) by assuming an
average mutation rate per generation of m= 161028 and an

average generation time of three years [22,25] (see Discussion).
The inferred tracks of ancestral Ne in dogs show a population
decline of at least 16-fold over the past 50 thousand years, from
greater than 32,000 individuals (ancestral Ne for Basenji lineage:
32,100–35,500; for Dingo lineage: 32,500–37,400 95% bootstrap
CI) to less than 2,000 individuals (Basenji lineage: 1640–1980 at
4,000 years ago; Dingo lineage: 704–1042 at 3,000 years ago).
Interestingly, wolves also show a considerable, yet milder, 3-fold
reduction in effective population size to present estimates between
10,000 and 17,000 for the three wolf samples. For clarity, we note
that with PSMC the population size trajectories are effective sizes
for the lineages that eventually lead to the canid samples as they
are known today (e.g. as Basenji or as Dingo) and that looking
backwards in time eventually trace back to the common ancestral
lineage of dogs and wolves. Our observations do not appear to be

Figure 1. Geographic distribution of sampled lineages.
doi:10.1371/journal.pgen.1004016.g001

Figure 2. Comparison of next generation sequencing with array typed samples, and historical changes in effective population size.
PCA plot of next-generation sequencing (NGS) samples generated in this study (open circles) along with corresponding samples genotyped on the
Affymetrix canid array [10] (colors and two letter codes: red M = Mid-East Wolf, green E = European Wolf, black Ch = Chinese Wolf, purple Ba = Basenji,
brown Bo = Boxer, orange D = Dingo, cyan J = Golden Jackal).
doi:10.1371/journal.pgen.1004016.g002

Genome Sequencing Highlights Early History of Dogs
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multiple complementary methods provided us with a synthetic, robust view of the shared 

history of dogs and wolves, including population divergence times, ancestral population 

sizes, and rates of gene flow. Using polymorphism data from 10 million single-

nucleotide variant sites, we investigated: 1) the size of the ancestral wolf population at 

the time of wolf/dog divergence; 2) the geographic origins and timing of dog 

domestication; 3) post-divergence admixture between dogs and wolves. 

 

Results 
 

2.1 Genetic Distance Metrics 
	
  

Individual genome sequences include valuable information about phylogenetic 

relationships between our samples. However, interpretation of these phylogenetic 

signals is challenging due to the possibility of post-divergence gene flow between dogs 

and wolves, as well as incomplete lineage sorting (ILS), which is a consequence of 

large ancestral population sizes. To provide accurate estimates of phylogeny given 

these demographic processes, we constructed a neighbor-joining (NJ) tree from a 

conservative estimator of genome-wide pairwise sequence distance for all pairs in our 

seven genomes, including the Boxer reference and using the golden jackal as an 

outgroup. The genome-wide pairwise distance metric employed between each of the 6 

canid genomes and the reference Boxer sequence comes from (Gronau et al. 2011b) 

and is equal to: 

 



	
   

 (Eq 2.1) 

where X and Y represent the two genomes being compared, L is the total number of 

sites utilized in the analysis, ai and bi are the two allele copies carried by individual X, ci 

and di are the two allele copies carried by individual Y and δjk represents the Kronecker 

delta function (i.e. in this case equals one if allele j is identical to allele k and 0 

otherwise). This measure represents a conservative estimate of the expected number of 

differences per site between individual chromosomes drawn. 

We also computed the average number of nucleotide differences per site among 

a pair of randomly drawn alleles from each individual, using the following equation

 (Eq 2.2) 

We took all of the sites across the genome that passed our quality filters to compute a 

matrix of pairwise distances between all canid genomes using E2.1 and E2.2 (Tables 

2.1 and 2.2, respectively). The distances of all taxa to the golden jackal are very similar 

(approximately 0.0021) while the distances between dogs and wolves were about a half 

of that (0.0011). We used the matrix of pairwise distances generated by E2.1 and E2.2 

to generate phylogenetic trees using the neighbor joining method as implemented on 

the program neighbor of the phylogenetic package PHYLIP (Felsenstein 1989). 

In the neighbor-joining tree generated by using E2.1 (Figure 2.2A), all dogs were 

clustered into a single clade. Wolves also comprised a single clade, separated from 

other species by a branch of relatively short length. The Dingo was recovered as the 

outgroup to a clade comprised of Basenji and Boxer. Similarly, the Chinese wolf was 
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S8.1  Distance Matrices and Phylogenetic Tree Reconstruction 
 
S.8.1.1  Distance Metrics 
We computed a matrix with the pairwise genetic distances between each of the 6 canid genomes 
and the reference Boxer sequence using the genetic distance metric from Gronau et al. [1]:!
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where X and Y represent the two genomes being compared, L is the total number of sites utilized 
in the analysis, ai  and bi  are the two allele copies carried by individual X, ci  and di  are the two 
allele copies carried by individual Y and δjk represents the Kronecker delta function (i.e. in this 
case equals one if allele j is identical to allele k and 0 otherwise).This measure represents a 
conservative estimate of the expected number of differences per site between individual 
chromosomes drawn (Gronau et al, 2011, S3.2).  

We also computed the average number of nucleotide differences per site among a pair of 
randomly drawn alleles from each individual, using the following equation:!
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! ! ! (E8.2)!
In order to be included in the analysis, sites had to pass the GF2 and SF filters and had no 
missing genotypes for all of the six samples.   
 
S8.1.2 Results on Genome-wide Pairwise Distances 
We took all of the sites across the genome that passed the quality filters defined above to 
compute a matrix of pairwise distances between all canid genomes using E8.1 and E8.2 (Tables 
S8.1.1 and S8.1.2, respectively).  The distances of all taxa to the golden jackal are very similar 



	
   

inferred as the outgroup to the clade formed by the Israeli and Croatian wolves. Thus, 

the phylogenetic tree supports the hypothesis that dogs and wolves are reciprocally 

monophyletic taxa. 

The tree created using E2.2 (Figure 2.2B) differs from the previous tree in the position 

of the Chinese Wolf lineage. The Chinese Wolf appears as an outgroup to the clade 

comprised of the remaining dogs and wolves. However, the bootstrap support is low for 

both the branch that joins that lineage to the whole wolf-dog clade (54.2%) and the 

branch ancestral to the clade comprised of the Croatian and Israeli wolves 53.7%). 

 

Table 2.1. Genome-wide pairwise sequence divergence, estimated using E2.1 using all 

the genomic sites that passed our genomic quality filters. 

	
    

Boxer 

 

Basenji 

 

Dingo 

Israeli 

wolf 

Croatian 

wolf 

Chinese Golden 

wolf jackal Boxer 	
   	
   	
   	
   	
   	
  
Basenji 0.00087 	
   	
   	
   	
   	
  
Dingo 0.00094 0.00097 	
   	
   	
   	
  
Israeli wolf 0.00111 0.00105 0.00111 	
   	
   	
  
Croatian wolf 0.00113 0.00110 0.00112 0.00101 	
   	
  
Chinese wolf 0.00114 0.00111 0.00111 0.00106 0.00105 	
  
Golden jackal 0.00211 0.00211 0.00212 0.00209 0.00209 0.00210 

 

  



	
   

Table 2.2. Genome-wide pairwise sequence divergence, estimated using E2.2 using all 

the genomic sites that passed our genomic quality filters. 

	
    

Boxer 

 

Basenji 

 

Dingo 

Israeli 

wolf 

Croatian 

wolf 

Chinese Golden 

wolf jackal Boxer 	
   	
   	
   	
   	
   	
  
Basenji 0.00087 	
   	
   	
   	
   	
  
Dingo 0.00094 0.00100 	
   	
   	
   	
  
Israeli wolf 0.00111 0.00112 0.00116 	
   	
   	
  
Croatian wolf 0.00113 0.00117 0.00116 0.00115 	
   	
  
Chinese wolf 0.00114 0.00117 0.00115 0.00118 0.00115 	
  
Golden jackal 0.00211 0.00214 0.00214 0.00214 0.00214 0.00214 
	
  

	
  

Figure 2.2 Neighbor-joining tree of canid samples plus the Boxer reference 

(CanFam3.0) for all positions passing our quality filters and for which there was no 

missing data for any sample. The distance metrics used were E2.1 and E2.2 for 

panel A) and B), respectively. For each branch, we report the genetic distance (left 

side of the slash) and the bootstrap support (right side of the slash). Bootstrap 

replicates were generated by dividing the genome of each species into windows of 

500 kb based on the genomic coordinates of the Boxer reference, and then 

resampling with replacement from those windows until the bootstrapped genomes 
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Figure S8.1.1. Neighbor-joining tree of canid samples plus the Boxer reference (CanFam3.0) for all positions 
passing the GF2 and SF filters and for which there was no missing data for any sample. The distance metrics used 
were E8.1 and E8.2 for panel A) and B), respectively. For each branch, we report the genetic distance (left side of 
the slash) and the bootstrap support (right side of the slash). Bootstrap replicates were generated by dividing the 
genome of each species into windows of 500 kb based on the genomic coordinates of the Boxer reference, and then 
resampling with replacement from those windows until the bootstrapped genomes for each species contain an equal 
or greater number of sites called as the true genomes.  
 
S8.2 Population Size Change From Single Genome Sequences 
 
S8.2.1 PSMC: General Approach 
We used the methods developed by Li and Durbin [3] to infer the trajectory of population sizes 
across time for the six canid genome sequences. Briefly, the method uses the distribution of 
heterozygote sites across the genome and a pairwise sequentially Markovian coalescent (PSMC) 
model that defines a Hidden Markov Model, where the parameters are the mutation rate, 
recombination rate and the effective population sizes through time. The parameters are inferred 
through an Expectation-Maximization algorithm. 
 The genotypes for each diploid genome sample that passed the GF2 and SF filters were 
transformed into a sequence of ‘0’, ‘1’ and ‘.’, with one character for each 100bp, and where a 
‘1’ was assigned if there were heterozygous sites in the window, 0 if there were none, and a ‘.’ 
was given if more than 90 positions were missing in the 100 bp window.  Passing this data into 
the PSMC software, we ran 20 iterations of the Expectation-Maximization algorithm [3]. The 
EM algorithm was run using an upper bound on the time to the most recent common ancestor 
equal to 10 in a 2N0 scale and an initial θ/ρ set to the default value of 5. Following [3], the Ne 
was inferred across 64 different intervals for each dog genome, where the interval boundaries 
were set equal to:  

!
on a 2N0 scale ,where i takes values from 0 to 64. In a preliminary run we found that the number 
of recombination events inferred in the most recent time intervals by PSMC falls below 10.  In 
such situations, the authors of PSMC recommend refraining from inferring a population size 
during such time intervals.  Thus, we merged the first 6 intervals such that only a single Ne is 



	
   

for each species contain an equal or greater number of sites called as the true 

genomes. 

 

 

2.2 Population Size Change Inference From Single Genome Sequences 
 

We used the methods developed by (Li & Durbin 2011b) to infer the trajectory of 

population sizes across time for the six canid genome sequences. Briefly, the method 

uses the distribution of heterozygote sites across the genome and a pairwise 

sequentially Markovian coalescent (PSMC) model that defines a Hidden Markov Model, 

where the parameters are the mutation rate, recombination rate and the effective 

population sizes through time. The parameters are inferred through an Expectation-

Maximization algorithm. 

The genotypes for each diploid genome sample that passed the GF2 and SF 

filters were transformed into a sequence of ‘0’, ‘1’ and ‘.’, with one character for each 

100bp, and where a ‘1’ was assigned if there were heterozygous sites in the window, 0 

if there were none, and a ‘.’ was given if more than 90 positions were missing in the 100 

bp window. Passing this data into the PSMC software, we ran 20 iterations of the 

Expectation-Maximization algorithm. The EM algorithm was run using an upper bound 

on the time to the most recent common ancestor equal to 10 in a 2N0 scale and an 

initial ρ/Θ set to the default value of 5. Following (Li & Durbin 2011b), the Ne was 

inferred across 64 different intervals for each dog genome, where the interval 

boundaries were set equal to: 



	
   

 

on a 2N0 scale ,where i takes values from 0 to 64. In a preliminary run we found that the 

number of recombination events inferred in the most recent time intervals by PSMC falls 

below 10. In such situations, the authors of PSMC recommend refraining from inferring 

a population size during such time intervals.  Thus, we merged the first 6 intervals such 

that only a single Ne is inferred across them while the next 58 intervals were allowed to 

have interval-specific Ne values (in the Chinese wolf, the number of recombination 

events was higher and thus we continued to use all 64 intervals). 

To translate from time units of generations to calendar years, we assume a 

generational time of 3 years for the wolves and the golden jackal. For the Dingo and the 

basenji, we used a generational time of 2 years from the present until the Ne interval 

that reached 10,000 years ago and for all Ne intervals further into the past, we used a 

generational time of 3 years. We found this scaling improved the concordance of the 

trajectories during the ancestral period where we expect them to be identical across 

lineages and is motivated by the known shorter generation time in domestic dogs. 

Following (Kerstin Lindblad-Toh et al. 2005), the mutation rate assumed was 1.0 × 10-8 

per generation. 

The full results including the golden jackal are shown in Figure 2.3. The golden jackal 

shows an apparent large increase in effective populations size around 80,000 years 

ago. We address interpretations of this signal in more detail in the results of our 

validation study (see below). 
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Figure S8.1.1. Neighbor-joining tree of canid samples plus the Boxer reference (CanFam3.0) for all positions 
passing the GF2 and SF filters and for which there was no missing data for any sample. The distance metrics used 
were E8.1 and E8.2 for panel A) and B), respectively. For each branch, we report the genetic distance (left side of 
the slash) and the bootstrap support (right side of the slash). Bootstrap replicates were generated by dividing the 
genome of each species into windows of 500 kb based on the genomic coordinates of the Boxer reference, and then 
resampling with replacement from those windows until the bootstrapped genomes for each species contain an equal 
or greater number of sites called as the true genomes.  
 
S8.2 Population Size Change From Single Genome Sequences 
 
S8.2.1 PSMC: General Approach 
We used the methods developed by Li and Durbin [3] to infer the trajectory of population sizes 
across time for the six canid genome sequences. Briefly, the method uses the distribution of 
heterozygote sites across the genome and a pairwise sequentially Markovian coalescent (PSMC) 
model that defines a Hidden Markov Model, where the parameters are the mutation rate, 
recombination rate and the effective population sizes through time. The parameters are inferred 
through an Expectation-Maximization algorithm. 
 The genotypes for each diploid genome sample that passed the GF2 and SF filters were 
transformed into a sequence of ‘0’, ‘1’ and ‘.’, with one character for each 100bp, and where a 
‘1’ was assigned if there were heterozygous sites in the window, 0 if there were none, and a ‘.’ 
was given if more than 90 positions were missing in the 100 bp window.  Passing this data into 
the PSMC software, we ran 20 iterations of the Expectation-Maximization algorithm [3]. The 
EM algorithm was run using an upper bound on the time to the most recent common ancestor 
equal to 10 in a 2N0 scale and an initial θ/ρ set to the default value of 5. Following [3], the Ne 
was inferred across 64 different intervals for each dog genome, where the interval boundaries 
were set equal to:  

!
on a 2N0 scale ,where i takes values from 0 to 64. In a preliminary run we found that the number 
of recombination events inferred in the most recent time intervals by PSMC falls below 10.  In 
such situations, the authors of PSMC recommend refraining from inferring a population size 
during such time intervals.  Thus, we merged the first 6 intervals such that only a single Ne is 



	
   

 

 

 

Figure 2.3. Ne trajectories of 6 canid lineages reconstructed using the PSMC 

method. Dark and light lines indicate whole genome based estimates and bootstrap 

estimates, respectively. 

 

2.3 Quality control of population size change inferences 
 

We assessed the confidence in our PSMC findings in three ways. First, to assess the 

certainty in the inferred Ne trajectories, we ran the PSMC method using the same 

settings for the initial estimations, assessing the variance in those estimates from 100 

bootstrap replicates for each genome. To sample a bootstrap replicate, we divided the 

genome into segments of 5Mb, sampled with replacement from those segments until we 

obtained a sequence with approximately the same length as the original genome as 

defined by using the “-b“ option in the PSMC software, and re-ran the EM-based Ne 

! S8$4!

inferred across them while the next 58 intervals were allowed to have interval-specific Ne values 
(in the Chinese wolf, the number of recombination events was higher and thus we continued to 
use all 64 intervals). 
 To translate from time units of generations to calendar years, we assume a generational 
time of 3 years for the wolves and the golden jackal. For the Dingo and the basenji, we used a 
generational time of 2 years from the present until the Ne interval that reached 10,000 years ago 
and for all Ne intervals further into the past, we used a generational time of 3 years. We found 
this scaling improved the concordance of the trajectories during the ancestral period where we 
expect them to be identical across lineages and is motivated by the known shorter generation 
time in domestic dogs.  Following Lindblad-Toh et al. [4], the mutation rate assumed was 1.0 × 
10-8 per generation. 
 The full results including the golden jackal are shown here (Figure S8.2.1). The golden 
jackal shows an apparent large increase in effective populations size around 80,000 years ago.  
We address interpretations of this signal in more detail in the results of our validation study (see 
below).  
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Figure S8.2.1. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3]. Dark 
and light lines indicate whole genome based estimates and bootstrap estimates, respectively. 

S8.2.2 Validation 
We assessed the confidence in our PSMC findings in three ways. First, to assess the certainty in 
the inferred Ne trajectories, we ran the PSMC method using the same settings for the initial 
estimations, assessing the variance in those estimates from 100 bootstrap replicates for each 
genome. To sample a bootstrap replicate, we divided the genome into segments of 5Mb, sampled 
with replacement from those segments until we obtained a sequence with approximately the 
same length as the original genome as defined by using the “-b“ option in the PSMC software, 
and re-ran the EM-based Ne estimation procedure.  This analysis revealed a low variability 
among the Ne traces, comparable to what has been recovered in the analysis of human genome 
sequences (Figure S8.2.1) [3].  
 Second, we tested the sensitivity of the methods to long runs of homozygosity (RoH), as 
the Chinese wolf sample evidenced several runs (see Text S5.6). To test if long runs of 
homozygosity could bias the inference of Ne trajectories, we identified runs of homozygosity 



	
   

estimation procedure.  This analysis revealed a low variability among the Ne traces, 

comparable to what has been recovered in the analysis of human genome sequences 

(Figure 2.3) (Li & Durbin 2011b). 

Second, we tested the sensitivity of the methods to long runs of homozygosity 

(RoH), as the Chinese wolf sample evidenced several runs. To test if long runs of 

homozygosity could bias the inference of Ne trajectories, we identified runs of 

homozygosity with the program PLINK (Purcell et al. 2007). As can be seen in Figure 

2.4, the estimated trajectories are not affected by the removal of the RoH regions. This 

implies that the degree of inbreeding in the Chinese wolf is not large enough to bias the 

inference of ancestral demographic events estimated by the PSMC method. 

Third, to investigate the sensitivity of PSMC to our choice of minimum acceptable 

genotype quality (GQ	
   ≥20), we ran the PSMC analysis including the genotypes that 

passed our quality filters, but relaxing the GQ such that we included sites with GQ≥10 

(as a contrast, Figure 2.3 use the genotypes that passed the GF2 and SF1 filters and 

had a GQ ≥ 20). Using this more liberal GQ threshold, values of Ne are lower by 

approximately 1,000 along the trajectory of all canids (Figure 2.5), however the Ne 

trajectories remain largely concordant. The effect is particularly strong in the golden 

jackal between 50,000 – 300,000 years ago, where using a lower GQ threshold reduces 

the estimates of Ne by 2,000. The difference between the dog and wolf Ne at earlier 

times (5,000-70,000 years) is more noticeable when using a higher GQ threshold. The 

reductions in Ne across the PSMC traces are consistent with expectations with respect 

to how confidence in genotype quality scales differently for homozygous versus 

heterozygous genotype calls. Homozygous sites can be called confidently with less data 



	
   

that is of lower quality. Conversely, heterozygous calls will require more and higher 

quality data, such that genotype qualities at those sites will be higher. As a result, 

lowering the GQ threshold leads to the inclusion of disproportionately more 

homozygous genotypes than low quality heterozygous ones, reducing the observed 

heterozygosity within defined intervals, and as a result, the inferred Ne. Overall, 

although changes in GQ filtering does influence the estimates of the Ne trajectories, the 

magnitude of the changes are not large, and more importantly, the major patterns in the 

inferred trajectories are preserved.	
  

Fourth, we simulated genome sequences arising from the demographic history 

inferred from a model inferred by the method G-PhoCS (more details on Text S9 from 

Freedman et al., 2014), a recently developed Bayesian demographic inference 

method, which assumes that wolves and dogs are reciprocally monophyletic taxa to 

determine if we could accurately reconstruct changes in Ne conditional on such a 

history. Specifically, for each species we simulated one hundred regions of 30Mb 

apiece using the program MaCS (Chen et al. 2009). We conducted these simulations 

under three different scenarios, varying the levels of gene flow between lineages. We 

used parameter values from the main results obtained with G-PhoCS.  The scenarios 

tested used: 

 

1) The full model inferred from G-PhoCS (Command Line 1 in Appendix, see 

command-line parameter listings below). 

2) Our model inferred with G-PhoCS but with no gene flow between any species at any 

time (Command Line 2 in Appendix). 



	
   

3) The model inferred by G-PhoCS but with only one form of gene flow, from golden 

jackal to the ancestor of dogs and wolves (Command Line 3 in Appendix). 

4) The model inferred by G-PhoCS but with only one form of gene flow, from the 

ancestor of dogs and wolves to the golden jackal (Command Line 4 in Appendix). 

5) The model inferred by G-PhoCS but only with gene flow from the Israeli wolf to the 

golden jackal (Command Line 5 in Appendix). 

 

Figure 2.4. Ne trajectories of 6 canid lineages reconstructed with the PSMC 

method using all the genomic information that passed our quality filters (dashed 

lines) and excluding 43 regions with runs of homozygosity (solid lines). 
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Figure S8.2.2. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3], using 
all the genomic information that passed our quality filters (dashed lines) and excluding 43 regions with runs of 
homozygosity (solid lines). 
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Figure S8.2.3. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] using 
the sites that had a GQ >= 10 and passed the SF and GF2 filters.  

 
There are 7 different genomes being simulated in the command lines for each scenario. They are 
a haploid genome of the Boxer and diploid genomes for the Basenji, Dingo, Israeli wolf, 
Croatian wolf, Chinese wolf and Golden Jackal, respectively.  Only the diploid genomes were 
used in this analysis. The output of MaCS was processed using perl scripts, so that each of the 
30Mb regions was transformed into a binary sequence of ‘1’ and ‘0’, where each character was 
determined by the presence or absence of a heterozygote site in contiguous windows of 100bp. 
Then, for each lineage we used the 100 transformed binary sequences of 30Mb to run the PSMC 
method using the following command line:  



	
   

 

Figure 2.5 Ne trajectories of 6 canid lineages reconstructed with the PSMC method 

using the sites that had a GQ ≥ 10. 

 

There are 7 different genomes being simulated in the command lines for each scenario. 

They are a haploid genome of the Boxer and diploid genomes for the Basenji, Dingo, 

Israeli wolf, Croatian wolf, Chinese wolf and Golden Jackal, respectively. Only the 

diploid genomes were used in this analysis. The output of MaCS was processed using 

perl scripts, so that each of the 30Mb regions was transformed into a binary sequence 

of ‘1’ and ‘0’, where each character was determined by the presence or absence of a 

heterozygote site in contiguous windows of 100bp. Then, for each lineage we used the 

100 transformed binary sequences of 30Mb to run the PSMC method using the 

following command line: 

./psmc -N20 -t10 -r5 -p "1*6+58*1" -o <Output file> <Input file>. 

The recombination rate in all scenarios was assumed to be equal to 0.92 cM/Mb, 

a value that is equal to the mean recombination rate estimated in the dog genome in a 
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Figure S8.2.2. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3], using 
all the genomic information that passed our quality filters (dashed lines) and excluding 43 regions with runs of 
homozygosity (solid lines). 
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Figure S8.2.3. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] using 
the sites that had a GQ >= 10 and passed the SF and GF2 filters.  

 
There are 7 different genomes being simulated in the command lines for each scenario. They are 
a haploid genome of the Boxer and diploid genomes for the Basenji, Dingo, Israeli wolf, 
Croatian wolf, Chinese wolf and Golden Jackal, respectively.  Only the diploid genomes were 
used in this analysis. The output of MaCS was processed using perl scripts, so that each of the 
30Mb regions was transformed into a binary sequence of ‘1’ and ‘0’, where each character was 
determined by the presence or absence of a heterozygote site in contiguous windows of 100bp. 
Then, for each lineage we used the 100 transformed binary sequences of 30Mb to run the PSMC 
method using the following command line:  



	
  
 

linkage map generated using microsatellites (Wong et al. 2010). In these simulations, 

we set the generational time to 3 years and mutation rate to 1 × 10-8 per bp per 

generation for all species. 

We compared the Ne trajectories specified in the simulations with the estimations 

done by the PSMC method for each canid species. Scenarios 2 (Figure 2.6) and 3 

(Figure 2.7) have remarkably similar and accurate trajectories inferred using the PSMC 

method for all species of canids. In scenarios 4 (Figure 2.8), 5 (Figure 2.9) and 1 

(Figure 2.10), the Ne trajectories are also accurate for all species of canids but the 

golden jackal, where the estimate of Ne is inflated in the interval from 10,000 - 300,000 

years ago, with a distinctive sharp peak between 100,000 and 300,000 years ago. 

Admixture with wolves or the ancestor of dogs and wolves appears to generate the 

extreme upward bias in the inferred ancestral jackal Ne. In PSMC inferences from 

simulated jackal demographic histories the presence of jackal - dog/wolf ancestor and 

jackal - Israeli wolf migration bands (Figures 2.8 – 2.10) produced an artefactual spike 

in the jackal Ne trajectory. This sharp peak is similar to the one observed in the 

empirical data from the golden jackal, although in the Ne trajectory reconstructed from 

that data, the peak is slightly more recent. Overall, we conclude the peak in the Ne 

trajectory observed in the data is likely due to post- divergence gene flow between 

ancestors of contemporary golden jackals and Israeli wolves or the ancestor of dogs 

and wolves. Ongoing work has found evidence for multiple highly divergent jackal or 

jackal-like lineages in Africa and the Middle East (Koepfli et al. 2015). 

 



	
  
 

 

Figure 2.6 Ne trajectories of 6 canid lineages reconstructed using the PSMC 

method, for data simulated under the G-PhoCS inferred demographic history, 

excluding migration bands. The dotted lines show the actual Ne trajectories 

whereas the solid lines represent the inferred Ne trajectories. 

 

Figure 2.7. Ne trajectories of 6 canid lineages reconstructed using the PSMC 

method for data simulated under the G-PhoCS inferred demographic history, only 

including gene flow from the golden jackal to the ancestor of dogs and wolves. 
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./psmc -N20 -t10 -r5 -p "1*6+58*1" -o <Output file> <Input 
file>. 

The recombination rate in all scenarios was assumed to be equal to 0.92 cM/Mb, a value that is 
equal to the mean recombination rate estimated in the dog genome in a linkage map generated 
using microsatellites [7]. In these simulations, we set the generational time to 3 years and 
mutation rate to 1 × 10-8 per bp per generation for all species.  
 We compared the Ne trajectories specified in the simulations with the estimations done by 
the PSMC method for each canid species. Scenarios 2 (Figure S8.2.4) and 3 (Figure S8.2.5) have 
remarkably similar and accurate trajectories inferred using the PSMC method for all species of 
canids. In scenarios 4 (Figure S8.2.6), 5 (Figure S8.2.7) and 1 (Figure S8.2.8), the Ne trajectories 
are also accurate for all species of canids but the golden jackal, where the estimate of Ne is 
inflated in the interval from 10,000 - 300,000 years ago, with a distinctive sharp peak between 
100,000 and 300,000 years ago.  
 Admixture with wolves or the ancestor of dogs and wolves appears to generate the 
extreme upward bias in the inferred ancestral jackal Ne. In PSMC inferences from simulated 
jackal demographic histories the presence of jackal - dog/wolf ancestor and jackal - Israeli wolf 
migration bands (Figures S8.2.6 – S8.2.8) produced an artefactual spike in the jackal Ne 
trajectory. This sharp peak is similar to the one observed in the empirical data from the golden 
jackal, although in the Ne trajectory reconstructed from that data, the peak is slightly more recent. 
Overall, we conclude the peak in the Ne trajectory observed in the data is likely due to post-
divergence gene flow between ancestors of contemporary golden jackals and Israeli wolves or 
the ancestor of dogs and wolves. Ongoing work has found evidence for multiple highly divergent 
jackal or jackal-like lineages in Africa and the Middle East (Koepfli et al., unpublished data).  
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Figure S8.2.4. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3], for 
data simulated under the G-PhoCS inferred demographic history, excluding migration bands. The dotted lines show 
the actual Ne trajectories whereas the solid lines represent the inferred Ne trajectories. 
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Figure S8.2.5. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] for 
data simulated under the G-PhoCS inferred demographic history, only including gene flow from the golden jackal to 
the ancestor of dogs and wolves. Inferred Ne trajectories are shown with solid lines and the actual Ne trajectories are 
displayed with dotted lines. 
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Figure S8.2.6. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] for 
data simulated under the G-PhoCS inferred demographic history, only including gene flow from the ancestor of dogs 
and wolves to golden jackal. Inferred Ne trajectories are shown with solid lines and the actual Ne trajectories are 
displayed with dotted lines. 

 



	
  
 

Inferred Ne trajectories are shown with solid lines and the actual Ne trajectories are 

displayed with dotted lines. 

 

 

 

Figure 2.8. Ne trajectories of 6 canid lineages reconstructed using the PSMC 

method for data simulated under the G-PhoCS inferred demographic history, only 

including gene flow from the ancestor of dogs and wolves to golden jackal. Inferred 

Ne trajectories are shown with solid lines and the actual Ne trajectories are 

displayed with dotted lines. 
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Figure S8.2.5. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] for 
data simulated under the G-PhoCS inferred demographic history, only including gene flow from the golden jackal to 
the ancestor of dogs and wolves. Inferred Ne trajectories are shown with solid lines and the actual Ne trajectories are 
displayed with dotted lines. 
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Figure S8.2.6. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] for 
data simulated under the G-PhoCS inferred demographic history, only including gene flow from the ancestor of dogs 
and wolves to golden jackal. Inferred Ne trajectories are shown with solid lines and the actual Ne trajectories are 
displayed with dotted lines. 

 



	
  
 

 

Figure 2.9. Ne trajectories of 6 canid lineages reconstructed using the PSMC 

method for data simulated under the G-PhoCS inferred demographic history, only 

including gene flow from Israeli wolf to golden jackal. Inferred Ne trajectories are 

shown with solid lines and the actual Ne trajectories are displayed with dotted lines. 

 

Figure 2.10. Ne trajectories of 6 canid lineages reconstructed using the PSMC 

method, for data simulated under the G-PhoCS inferred demographic history, 

including all detected gene flow. The actual Ne trajectories are shown as dotted 

lines whereas the inferred Ne trajectories are depicted by solid lines. 
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Figure S8.2.7. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] for 
data simulated under the G-PhoCS inferred demographic history, only including gene flow from Israeli wolf to  
golden jackal. Inferred Ne trajectories are shown with solid lines and the actual Ne trajectories are displayed with 
dotted lines. 
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Figure S8.2.8. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3], for 
data simulated under the G-PhoCS inferred demographic history, including all detected gene flow. The actual Ne 
trajectories are shown as dotted lines whereas the inferred Ne trajectories are depicted by solid lines. 

 

S8.3 Genealogies and Incomplete Lineage Sorting 

S8.3.1 Definition of Neutral Loci 
To assess patterns of incomplete lineage sorting, we focused on a set of neutral loci, 1kb in 
length, chosen so as to reduce potential confounding effects of natural selection, following 
guidelines set by several previous studies [1,8]. To create this set of loci, we scanned the boxer 
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Figure S8.2.7. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3] for 
data simulated under the G-PhoCS inferred demographic history, only including gene flow from Israeli wolf to  
golden jackal. Inferred Ne trajectories are shown with solid lines and the actual Ne trajectories are displayed with 
dotted lines. 
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Figure S8.2.8. Ne trajectories of 6 canid lineages reconstructed using the PSMC method of Li and Durbin [3], for 
data simulated under the G-PhoCS inferred demographic history, including all detected gene flow. The actual Ne 
trajectories are shown as dotted lines whereas the inferred Ne trajectories are depicted by solid lines. 

 

S8.3 Genealogies and Incomplete Lineage Sorting 

S8.3.1 Definition of Neutral Loci 
To assess patterns of incomplete lineage sorting, we focused on a set of neutral loci, 1kb in 
length, chosen so as to reduce potential confounding effects of natural selection, following 
guidelines set by several previous studies [1,8]. To create this set of loci, we scanned the boxer 



	
  
 

 

2.4 Post-Divergence Gene Flow 
 

To investigate the extent of gene flow between wolves and dogs subsequent to their 

divergence, we employed a method recently developed by (Durand et al. 2011). This 

method tests for gene flow by testing for asymmetries in allele sharing between a 

source lineage (P3), and either of two receiving lineages (P1, P2). In this case, the 

ancestor of P1 and P2 is sister to the ancestor of P3. Given a site that is bi-allelic in (P1, 

P2, P3) where P3 is in state B and an outgroup (O) is in state A, there are two possible 

allelic configurations of P1-P2-P3-O that are informative with respect to gene flow 

between P3 and either P1 or P2: ABBA and BABA. In the absence of lineage- specific 

post-divergence gene flow and under selective neutrality, the genome-wide frequency of 

these configurations should be approximately equal. Thus, the null hypothesis is that 

there has not been gene flow between P3 and P1 or P2 after the divergence of P3 from 

P1 and P2. We defined an ABBA site as a site where P1 and the outgroup shared the 

same allele ‘A’ while P2 and P3 shared an alternative allele ‘B’. A site was defined as a 

BABA site when the outgroup and P2 shared the allele ‘A’ and the alternative allele ‘B’ 

was shared between P1 and P3. The rejection of the null hypothesis indicates that there 

has been gene flow between P3 and either P1 or P2.  Deviations from the null 

expectation were quantified using the D-statistic: 

 

E2.3 
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not been gene flow between P3 and P1 or P2 after the divergence of P3 from P1 and P2. We 
defined an ABBA site as a site where P1 and the outgroup shared the same allele ‘A’ while P2 
and P3 shared an alternative allele ‘B’. A site was defined as a BABA site when the outgroup 
and P2 shared the allele ‘A’ and the alternative allele ‘B’ was shared between P1 and P3. The 
rejection of the null hypothesis indicates that there has been gene flow between P3 and either P1 
or P2.  Deviations from the null expectation were quantified using the D-statistic: 
!

VICENTE DIEGO ORTEGA DEL VECCHYO

HOMEWORK 2

Chapter 6
Problem 26

First, we define the function f(x) = t � x, where x = T . Then, we apply Campbell’s
formula :

d(X,Y ) =
1

L

L⇤

i=1

[1� 1

2
max (�aici + �bidi , �aidi + �bici)]

d(X,Y ) =
1

L

L⇤

i=1

[1� 1

4
max (�aici + �bidi + �aidi + �bici)]

ti = 0.1 exp [
1

n
log (i+ 100)]� 0.1

D =

⇥n
i=1CABBA(i)�

⇥n
i=1CBABA(i)⇥n

i=1CABBA(i) +
⇥n
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! (Eq!8.3)!
where CABBA(i) and CBABA(i) are indicator variables equal to 1 or 0 depending on the presence or 
absence of the ABBA and BABA sites at the ith site. To calculate the D statistic, we specified the 
golden jackal as our outgroup, and divided the reference genome into 422 segments of 5 Mb 
each, excluding the chromosome ends where the remaining segment is < 5Mb. Within these 
segments, we used stringent filtering criteria, excluding genomic positions with missing data, 
and sites that failed either the GF2 or SF filters (see Text S4) For each species at each site, with 
the exception of the haploid boxer reference, we randomly sampled one allele from the called 
genotype. We then calculated the D statistic from a total of n sites that met our quality control 
filters.  
 To be consistent with the evolutionary history reflected in the recovered neighbor-joining 
tree (see S8.1 above), and to focus on gene flow most germane to evolutionary processes 
influencing wolf-dog divergence, we restricted testing to those cases where when one of the dog 
samples was P3, the other two (P1 and P2) were wolves, and vice versa (P3=wolf, P1 & P2 = 
dogs). Using these criteria, and including the boxer reference among the dogs, 18 tests were 
possible.  
 Following Durand et al. [12], the standard error of the statistic was calculated using a 
jackknife procedure [13]. A Z-score was then obtained by dividing the value of the D statistic by 
its standard error. Z-scores with an absolute value ≥3 were considered significant. Rejection of 
the null hypothesis indicates that there has been gene flow between P3 and either P1 or P2 [14]. 
Negative significant Z scores indicate gene flow between P1 and P3 while positive significant Z 
scores indicate gene flow between P2 and P3.  
 We found evidence for post-divergence gene flow between three pairs of samples: 
basenji/Israeli wolf, boxer/Israeli wolf, and dingo/Chinese wolf (Table S8.4.1). The mean 
absolute value of Z was highest in basenji/Israeli wolf (

! 

ˆ Z  = 9.27; range = 5.64 -12.11), 

compared to Chinese wolf/Dingo 

! 

ˆ Z  = 6.58; range = 3.58 – 10.14), and Israeli wolf/Boxer (

! 

ˆ Z  = 
6.15; range = 5.33 - 6.71).  
 Because calculation of the D statistic does not account for the effects of gene flow 
between the outgroup and any of the three samples considered under a given test, it is possible 
that such gene flow could introduce bias. In particular, our analyses using G-PhoCS support gene 
flow between the jackal and the Israeli wolf and jackal and the ancestral wolf. Nevertheless, our 
ABBA/BABA results are not affected by this gene flow for the following reasons. First, only the 
gene flow with Israeli wolf could affect the calculation of the D statistic. Thus, this gene flow 
would not affect tests that did not include the Israeli wolf. Second, this gene flow would not 
affect tests with two dogs and one wolf (dog,dog,wolf,jackal = 1,2,3,4), as Israeli wolf –jackal 



	
  
 

 

where CABBA(i) and CBABA(i) are indicator variables equal to 1 or 0 depending on the 

presence or absence of the ABBA and BABA sites at the ith site. To calculate the D 

statistic, we specified the golden jackal as our outgroup, and divided the reference 

genome into 422 segments of 5 Mb each, excluding the chromosome ends where the 

remaining segment is < 5Mb. Within these segments, we used stringent filtering criteria, 

excluding genomic positions with missing data, and sites that failed our set of quality 

filters. For each species at each site, with the exception of the haploid boxer reference, 

we randomly sampled one allele from the called genotype. We then calculated the D 

statistic from a total of n sites that met our quality control filters. 

To be consistent with the evolutionary history reflected in the recovered 

neighbor-joining tree (see Figure 2.2), and to focus on gene flow most germane to 

evolutionary processes influencing wolf-dog divergence, we restricted testing to those 

cases where when one of the dog samples was P3, the other two (P1 and P2) were 

wolves, and vice versa (P3=wolf, P1 & P2 = dogs). Using these criteria, and including 

the boxer reference among the dogs, 18 tests were possible. 

Following (Durand et al. 2011), the standard error of the statistic was calculated 

using a jackknife procedure (EFRON 1981). A Z-score was then obtained by dividing 

the value of the D statistic by its standard error. Z-scores with an absolute value ≥3 

were considered significant. Rejection of the null hypothesis indicates that there has 

been gene flow between P3 and either P1 or P2 (Rasmussen et al. 2014). Negative 

significant Z scores indicate gene flow between P1 and P3 while positive significant Z 

scores indicate gene flow between P2 and P3. 



	
  
 

We found evidence for post-divergence gene flow between three pairs of 

samples: basenji/Israeli wolf, boxer/Israeli wolf, and dingo/Chinese wolf (Table S8.4.1). 

The mean absolute value of Z was highest in basenji/Israeli wolf (|𝑍| = 9.27; range = 

5.64 -12.11), compared to Chinese wolf/Dingo |𝑍| = 6.58; range = 3.58 – 10.14), and 

Israeli wolf/Boxer (|𝑍| = 6.15; range = 5.33 - 6.71). 

Because calculation of the D statistic does not account for the effects of gene 

flow between the outgroup and any of the three samples considered under a given test, 

it is possible that such gene flow could introduce bias. In particular, our analyses using 

G-PhoCS support gene flow between the jackal and the Israeli wolf and jackal and the 

ancestral wolf. Nevertheless, our ABBA/BABA results are not affected by this gene flow 

for the following reasons. First, only the gene flow with Israeli wolf could affect the 

calculation of the D statistic. Thus, this gene flow would not affect tests that did not 

include the Israeli wolf. Second, this gene flow would not affect tests with two dogs and 

one wolf (dog,dog,wolf,jackal = 1,2,3,4), as Israeli wolf –jackal gene flow would lead to 

an allelic configuration that is **AA or **BB and thus not evaluated in the test. It is 

possible that, in tests with two wolves (one of which is the Israeli wolf), jackal- Israeli 

wolf admixture could give appearance of gene flow between the dog in question and the 

other wolf in the test. For example, consider a test that includes Israeli wolf, Croatian 

wolf, Basenji, and Golden Jackal. If the ‘B’ allele resulted from a mutation that arose in 

the ancestor to dogs and wolves, the original configuration would be BBBA, but Israeli 

wolf –jackal admixture would convert it to ABBA, leading to an upwardly biased count of 

this configuration, which would contribute to a Croatian wolf-Basenji gene flow signal. 

Nevertheless, we found in all tests with two wolves and one dog that include the Israeli 



	
  
 

wolf, the significant gene flow that is detected is between the Israeli wolf and the dog in 

question, the exact opposite of what would be expected if Israeli wolf –jackal gene flow 

were biasing the test statistic. 

A complete view of the pairs of taxons for which we inferred post-divergence 

gene flow is shown in Figure 2.11. 



	
   

Table 2.3. Estimation of post-divergence gene flow using the D Statistic (Durand et al. 

2011). The outgroup in all comparisons is the golden jackal. Statistical significance is 

evaluated using a two-tailed Z test, with the additional requirement that that absolute 

value of the Z-score to be ≥3. Significant tests and sample pairs showing evidence for 

post-divergence gene flow are shown in bold. 

  

P1 P2 P3 ABBA Sites BABA Sites D (%) SE (%) Z p-value 
Basenji Dingo Croatian wolf 164211 162364 0.57% 0.40% 1.42 0.16 

Basenji Dingo Israeli wolf 158610 179656 -6.22% 0.51% -12.21 2.79x10-34
 

Boxer Basenji Croatian wolf 144942 146113 -0.40% 0.46% -0.88 0.38 

Boxer Basenji Israeli wolf 157007 147991 2.96% 0.52% 5.64 1.67x10-8
 

Boxer Dingo Croatian wolf 177485 176031 0.41% 0.44% 0.94 0.35 

Boxer Dingo Israeli wolf 176511 189294 -3.49% 0.52% -6.71 1.96x10-11
 

Croatian wolf Israeli wolf Boxer 226123 210897 3.48% 0.65% 5.33 9.86x10-8
 

Croatian wolf Israeli wolf Dingo 213742 212876 0.20% 0.54% 0.38 0.71 

Croatian wolf Israeli wolf Basenji 205695 182191 6.06% 0.62% 9.74 1.99x10-22
 

Basenji Dingo Chinese wolf 173366 162030 3.38% 0.45% 7.49 6.76x10-14
 

Boxer Basenji Chinese wolf 149172 147273 0.64% 0.41% 1.54 0.12 

Boxer Dingo Chinese wolf 192400 175946 4.47% 0.44% 10.14 3.77x10-24
 

Croatian wolf Chinese wolf Boxer 216145 219859 -0.85% 0.42% -2.02 4.32x10-2
 

Croatian wolf Chinese wolf Dingo 221737 212060 2.23% 0.44% 5.10 3.48x10-7
 

Croatian wolf Chinese wolf Basenji 190706 191336 -0.16% 0.39% -0.42 0.68 

Chinese wolf Israeli wolf Boxer 242452 222327 4.33% 0.68% 6.41 1.43x10-10
 

Chinese wolf Israeli wolf Dingo 223003 232071 -1.99% 0.56% -3.58 3.48x10-4
 

Chinese wolf Israeli wolf Basenji 216213 191475 6.07% 0.64% 9.50 2.02x10-21
 

 

 

 



	
   

 

 

Figure 2.11 NJ tree constructed from genome-wide pairwise divergence, calculated 

using equation E8.1. All nodes have 100% bootstrap support. Dashed lines indicate 

admixture edges that were statistically significant in ABBA/BABA tests. (B) ABBA/BABA 

tests with significant Z-scores (values ≥3 are significant). All comparisons made are 

shown in Table 2.3. For each row, boldfaced labels indicate admixing lineages.  

 

2.5 Model fit using the ABBA/BABA/BBAA configurations statistics 
 

We tested the fit of the three models analyzed with G-PhoCS using the proportion of 

sites that contain alleles that are shared between two lineages but not the other two 

when comparing four species. The ABBA and BABA sites are defined following the 

notation seen in Section 2.4. On the other hand, a BBAA site is defined as one where 

the lineages P1 and P2 share one allele while the two other lineages P3 and O share a 

different allele. The proportion of those three types of sites is reflective of the 



	
   

genealogies contained in the data when comparing four lineages, where those 

genealogies are affected by gene flow and the divergence time between species. For a 

quartet of lineages P1, P2, P3 and O we estimated the frequency of a site being ABBA, 

BABA or BBAA given that there are two alleles, each present in two of the four species 

as: 

 

	
  

	
  

	
  

	
  

 

           (E2.4-6) 

We refer to these estimates as relative frequencies of ABBA, BABA and BBAA sites, 

respectively. In the equations, N(ABBA), N(BABA) and N(BBAA) are the number of 

ABBA, BABA and BBAA sites. 

The counts of ABBA, BABA and BBAA sites in the data were calculated using the 18 

quartet configurations that are shown in Table 2.4 with two additional quartet 

configurations that contain either three dogs or three wolves. Those two additional 

configurations were added because they are informative about the actual phylogenetic 

relationships inside dogs and inside wolves, respectively. A demographic model would 

be more likely to be correct if it captures similar values for E2.4-2.6 as those seen in 

data. The estimates of the number of ABBA/BABA/BBAA sites in the data are shown in 

Table 2.4, along with the estimates of the relative frequency of those sites. 



	
   

To mimic the empirical analysis (see above) we initially simulated 422 regions of 5Mb 

using the three models analyzed by G-PhoCS (more details on Text S9 from Freedman 

et al., 2014). However, because this produced an excess of ABBA/BABA/BBAA sites, to 

match the counts of these site classes seen in the data, we reduced our region size, 

instead simulating 422 regions of 2Mb. The simulations were performed using the 

following command lines: 

1) Model where the dogs and wolves are each a separate clade (Command Line 7 

in Appendix). This command line is identical to Command Line 1, with the only 

difference being the number of bases simulated. 

2) Regional domestication model (Command Line 8 in Appendix). 

3) Origin of dogs from the Israeli wolf (Command Line 9 in Appendix). 

As a measure of the fit of each model to the data, we calculated the total difference 

between each model and the data in the relative frequencies of the ABBA/BABA/BBAA 

sites using the following equation: 

(E8.7)	
  

Overall, we found that the model which provided a better fit to the data, in terms 

of a smaller absolute error as estimated by E8.7, was the model which assumes that the 

dogs and wolves are each a separate clade whereas the model which provided the 



	
   

worst fit was the one which assumes a regional domestication model (Table 2.5). 

Using a threshold of 1.5% to look for important absolute differences between the 

data and the model in terms of relative frequencies, we found larger differences in the 

relative frequencies of BBAA sites in the data and the model that provided a better fit to 

the data in comparisons that included the Dingo, Chinese Wolf and another species of 

dog. We also found that the model which provided a better fit to the data incorrectly 

estimated the relative frequencies of ABBA sites in comparisons including the Chinese 

Wolf as P1, Israeli wolf as P2 and the Boxer or Basenji as P3. Additionally, the number 

of BBAA sites in the quartet Boxer (P1), Dingo (P2) and Croatian Wolf (P3) deviated 

substantially from those observed in the empirical data. 

The regional domestication model overestimated the relative frequency of shared 

sites between Basenji and Dingo and underestimated the relative frequency of sites 

shared between (Dingo, Boxer) and (Boxer, Basenji) in comparisons that included the 

three dogs and the golden jackal. This shows that the phylogenetic relationships 

between dogs are more severely distorted under this model. This is also exemplified by 

the poor fit to the data in terms of the relative frequencies of ABBA/BABA/BBAA sites in 

the comparisons that include the Dingo, Boxer and another species of wolf. As in the 

model from Fig. 5A, the number of BBAA sites was also underestimated in the quartet 

Basenji (P1), Dingo (P2) and Chinese Wolf (P3). 

As with the best model, the model that posits the origin of dogs from the Israeli 

Wolf had poor fit to the data with respect to the relative frequency of BBAA sites in the 

comparisons of Boxer (P1), Dingo (P2) and Chinese Wolf (P3). The latter model also 

had problems fitting the relative frequencies of the three types of sites we were 



	
   

inspecting in comparisons that included the Israeli Wolf, Croatian Wolf and a dog. The 

relative frequency of BBAA sites in the comparison of Boxer, Dingo and Croatian Wolf 

was underestimated under this model. 



	
   

Table 2.4. Estimates of the number of ABBA/BABA/BBAA sites in the six canid 

genomes. For each cell and each quartet comparison we report the number of 

ABBA/BABA/BBAA sites followed by the frequency of those three types of sites given 

that the site is bi-allelic with the two alleles found in two species each. The golden jackal 

was used as an outgroup in all comparisons. 

 

	
   Data 	
  
P1 P2 P3 ABBA Sites BABA Sites BBAA Sites 
Basenji Dingo Croatian wolf 164211; 28.43% 162364; 28.11% 250958; 43.45% 

Basenji Dingo Israeli wolf 158610; 27.18% 179656; 30.78% 245329; 42.04% 

Boxer Basenji Croatian wolf 144942; 24.82% 146113; 25.02% 292896; 50.16% 

Boxer Basenji Israeli wolf 157007; 26.71% 147991; 25.17% 282873; 48.12% 

Boxer Dingo Croatian wolf 177485; 27.15% 176031; 26.93% 300095; 45.91% 

Boxer Dingo Israeli wolf 176511; 26.50% 189294; 28.42% 300201; 45.07% 

Croatian wolf Israeli wolf Boxer 226123; 34.16% 210897; 31.86% 224971; 33.98% 

Croatian wolf Israeli wolf Dingo 213742; 32.78% 212876; 32.65% 225351; 34.56% 

Croatian wolf Israeli wolf Basenji 205695; 35.29% 182191; 31.26% 194909; 33.44% 

Basenji Dingo Chinese wolf 173366; 29.45% 162030; 27.52% 253270; 43.02% 

Boxer Basenji Chinese wolf 149172; 24.91% 147273; 24.59% 302448; 50.50% 

Boxer Dingo Chinese wolf 192400; 28.40% 175946; 25.97% 309223; 45.64% 

Croatian wolf Chinese wolf Boxer 216145; 32.52% 219859; 33.08% 228675; 34.40% 

Croatian wolf Chinese wolf Dingo 221737; 33.97% 212060; 32.49% 218959; 33.54% 

Croatian wolf Chinese wolf Basenji 190706; 32.79% 191336; 32.90% 199502; 34.31% 

Chinese wolf Israeli wolf Boxer 242452; 35.42% 222327; 32.48% 219803; 32.11% 

Chinese wolf Israeli wolf Dingo 223003; 33.37% 232071; 34.73% 213209; 31.90% 

Chinese wolf Israeli wolf Basenji 216213; 36.43% 191475; 32.26% 185855; 31.31% 

Basenji Dingo Boxer 179362; 32.42% 216634; 39.16% 157265; 28.43% 

Chinese Wolf Croatian Wolf Israeli Wolf 230181; 34.70% 208597; 31.44% 224601; 33.86% 

 



	
   

Table 2.5. Estimates of the number of ABBA/BABA/BBAA sites in the three G-PhoCS 

models analyzed. For each cell and each quartet comparison we report: 1) The number 

of ABBA/BABA/BBAA sites; 2) The frequency of those three types of sites given that the 

site is bi-allelic with the two alleles found in two species each and 3) the difference of 

that frequency in the simulations minus what is estimated in the data (when this 

difference is bigger than 1.5%, we highlight the cell in bold). The lower row of the table 

indicates the fit of the model to the data as estimated by equation 8.7. The golden jackal 

was used as an outgroup in all comparisons. 

 

	
   	
   	
   Fig. 5A model (Model where the 

dogs and wolves are each a 

separate clade) 

 

Fig. 5B model (Regional 

domestication model) 

 

Fig. 5C model (Origin of dogs 

from the Israeli wolf) 
 

P1 

 

P2 

 

P3 

ABBA 

Sites 

BABA 

Sites 

BBAA 

Sites 

ABBA 

Sites 

BABA 

Sites 

BBAA 

Sites 

ABBA 

Sites 

BABA 

Sites 

BBAA 

Sites  

Basenji 

 

Dingo 

Croatian 

wolf 

177596; 

28.53%; 

0.10% 

180202; 

28.95%; 

0.84% 

264624; 

42.52%; 

-0.94% 

178773; 

28.94%; 

0.50% 

177186; 

28.68%; 

0.57% 

261870; 

42.39%; 

-1.07% 

178434; 

28.88%; 

0.45% 

177152; 

28.67%; 

0.56% 

262289; 

42.45%; 

-1.00%  

Basenji 

 

Dingo 
Israeli 

wolf 

173506; 

27.87%; 

0.69% 

191296; 

30.72%; 

-0.06% 

257817; 

41.41%; 

-0.63% 

173256; 

27.83%; 

0.65% 

192556; 

30.93%; 

0.15% 

256705; 

41.24%; 

-0.80% 

173222; 

27.82%; 

0.64% 

188792; 

30.32%; 

-0.46% 

260580; 

41.85%; 

-0.18%  

Boxer 

 

Basenji 
Croatian 

wolf 

157926; 

25.24%; 

0.42% 

158158; 

25.28%; 

0.26% 

309616; 

49.48%; 

-0.67% 

155013; 

24.78%; 

-0.04% 

156346; 

24.99%; 

-0.03% 

314275; 

50.23%; 

0.08% 

158543; 

25.42%; 

0.60% 

158872; 

25.47%; 

0.45% 

306268; 

49.11%; 

-1.05%  

Boxer 

 

Basenji 
Israeli 

wolf 

168735; 

26.93%; 

0.23% 

155221; 

24.78%; 

-0.40% 

302524; 

48.29%; 

0.17% 

165943; 

26.52%; 

-0.19% 

155130; 

24.79%; 

-0.38% 

304670; 

48.69%; 

0.57% 

167349; 

26.80%; 

0.09% 

155402; 

24.89%; 

-0.29% 

301725; 

48.32%; 

0.20%  

Boxer 

 

Dingo 
Croatian 

wolf 

172541; 

27.69%; 

0.53% 

175379; 

28.14%; 

1.21% 

275228; 

44.17%; 

-1.75% 

148908; 

23.69%; 

-3.47% 

148654; 

23.64%; 

-3.29% 

331136; 

52.67%; 

6.76% 

172536; 

27.92%; 

0.76% 

171583; 

27.76%; 

0.83% 

273917; 

44.32%; 

-1.59%  

Boxer 

 

Dingo 
Israeli 

wolf 

173388; 

27.77%; 

1.27% 

177664; 

28.45%; 

0.03% 

273358; 

43.78%; 

-1.30% 

147173; 

23.27%; 

-3.24% 

155660; 

24.61%; 

-3.82% 

329753; 

52.13%; 

7.05% 

171562; 

27.53%; 

1.03% 

175185; 

28.11%; 

-0.31% 

276446; 

44.36%; 

-0.72% 
Croatian 

wolf 

Israeli 

wolf 

 

Boxer 

205879; 

33.27%; 

-0.89% 

201724; 

32.60%; 

0.74% 

211157; 

34.13%; 

0.14% 

208604; 

33.71%; 

-0.44% 

200215; 

32.36%; 

0.50% 

209921; 

33.93%; 

-0.06% 

208423; 

33.80%; 

-0.36% 

207350; 

33.62%; 

1.76% 

200941; 

32.58%; 

-1.40% 
Croatian 

wolf 

Israeli 

wolf 

 

Dingo 

203877; 

32.96%; 

0.18% 

201160; 

32.53%; 

-0.13% 

213431; 

34.51%; 

-0.06% 

202216; 

32.78%; 

0.00% 

202568; 

32.84%; 

0.19% 

212020; 

34.37%; 

-0.19% 

205800; 

33.35%; 

0.57% 

209303; 

33.92%; 

1.27% 

201941; 

32.73%; 

-1.84% 
Croatian 

wolf 

Israeli 

wolf 

 

Basenji 

215597; 

34.74%; 

-0.56% 

197696; 

31.85%; 

0.59% 

207361; 

33.41%; 

-0.03% 

216547; 

34.95%; 

-0.35% 

196012; 

31.63%; 

0.37% 

207051; 

33.42%; 

-0.03% 

216467; 

35.11%; 

-0.19% 

203118; 

32.94%; 

1.68% 

197038; 

31.95%; 

-1.49% 



	
   

 

Basenji 

 

Dingo 
Chinese 

wolf 

188009; 

30.16%; 

0.71% 

177552; 

28.49%; 

0.96% 

257728; 

41.35%; 

-1.67% 

188470; 

30.47%; 

1.02% 

174988; 

28.29%; 

0.77% 

254996; 

41.23%; 

-1.79% 

185253; 

29.98%; 

0.53% 

173424; 

28.06%; 

0.54% 

259312; 

41.96%; 

-1.06%  

Boxer 

 

Basenji 
Chinese 

wolf 

160801; 

25.64%; 

0.74% 

158007; 

25.20%; 

0.61% 

308245; 

49.16%; 

-1.34% 

156840; 

25.13%; 

0.22% 

155804; 

24.97%; 

0.37% 

311426; 

49.90%; 

-0.60% 

157369; 

25.29%; 

0.38% 

159053; 

25.56%; 

0.97% 

305845; 

49.15%; 

-1.35%  

Boxer 

 

Dingo 
Chinese 

wolf 

184167; 

29.48%; 

1.09% 

170916; 

27.36%; 

1.40% 

269545; 

43.15%; 

-2.48% 

159174; 

25.32%; 

-3.08% 

144656; 

23.01%; 

-2.96% 

324831; 

51.67%; 

6.03% 

178856; 

28.94%; 

0.55% 

168711; 

27.30%; 

1.33% 

270441; 

43.76%; 

-1.88% 

Croatian 

wolf 

Chinese 

wolf 

 

Boxer 

203311; 

32.95%; 

0.43% 

202091; 

32.76%; 

-0.32% 

211562; 

34.29%; 

-0.11% 

200348; 

32.66%; 

0.14% 

198041; 

32.28%; 

-0.80% 

215078; 

35.06%; 

0.66% 

204468; 

33.45%; 

0.93% 

203864; 

33.35%; 

0.27% 

202947; 

33.20%; 

-1.20% 
Croatian 

wolf 

Chinese 

wolf 

 

Dingo 

213747; 

34.53%; 

0.57% 

196438; 

31.74%; 

-0.75% 

208747; 

33.73%; 

0.18% 

209895; 

34.22%; 

0.25% 

193324; 

31.52%; 

-0.97% 

210107; 

34.26%; 

0.71% 

210931; 

34.50%; 

0.53% 

201135; 

32.90%; 

0.41% 

199265; 

32.60%; 

-0.95% 
Croatian 

wolf 

Chinese 

wolf 

 

Basenji 

205710; 

33.27%; 

0.48% 

201464; 

32.58%; 

-0.32% 

211167; 

34.15%; 

-0.15% 

201556; 

32.84%; 

0.05% 

196880; 

32.08%; 

-0.82% 

215250; 

35.07%; 

0.77% 

203801; 

33.28%; 

0.49% 

204552; 

33.41%; 

0.50% 

203964; 

33.31%; 

-1.00% 
Chinese 

wolf 

Israeli 

wolf 

 

Boxer 

208018; 

33.51%; 

-1.91% 

205083; 

33.04%; 

0.56% 

207667; 

33.45%; 

1.35% 

210840; 

34.03%; 

-1.38% 

204758; 

33.05%; 

0.58% 

203911; 

32.91%; 

0.81% 

210065; 

34.00%; 

-1.42% 

209596; 

33.92%; 

1.45% 

198217; 

32.08%; 

-0.03% 
Chinese 

wolf 

Israeli 

wolf 

 

Dingo 

200720; 

32.34%; 

-1.03% 

215312; 

34.69%; 

-0.04% 

204645; 

32.97%; 

1.07% 

200301; 

32.34%; 

-1.03% 

217224; 

35.07%; 

0.34% 

201859; 

32.59%; 

0.69% 

204194; 

33.06%; 

-0.31% 

217493; 

35.21%; 

0.49% 

195969; 

31.73%; 

-0.18% 
Chinese 

wolf 

Israeli 

wolf 

 

Basenji 

216436; 

34.81%; 

-1.62% 

202781; 

32.61%; 

0.35% 

202571; 

32.58%; 

1.27% 

217724; 

35.14%; 

-1.29% 

201865; 

32.58%; 

0.32% 

199982; 

32.28%; 

0.96% 

218547; 

35.38%; 

-1.05% 

204447; 

33.10%; 

0.84% 

194752; 

31.53%; 

0.21%  

Basenji 

 

Dingo 

 

Boxer 

190695; 

31.36%; 

-1.06% 

242304; 

39.85%; 

0.69% 

175036; 

28.79%; 

0.36% 

244189; 

40.10%; 

7.69% 

219636; 

36.07%; 

-3.08% 

145058; 

23.82%; 

-4.60% 

192265; 

31.81%; 

-0.60% 

237327; 

39.27%; 

0.12% 

174739; 

28.91%; 

0.49% 
Chinese 

Wolf 

Croatian 

Wolf 

Israeli 

Wolf 

208874; 

33.63%; 

-1.06% 

203245; 

32.73%; 

1.28% 

208912; 

33.64%; 

-0.22% 

206703; 

33.38%; 

-1.32% 

198457; 

32.05%; 

0.61% 

214034; 

34.57%; 

0.71% 

204824; 

33.27%; 

-1.43% 

200458; 

32.56%; 

1.12% 

210316; 

34.16%; 

0.31% 	
   	
   Absolute 

Error 

0.4298 0.8219 0.4668 



	
  
 

Discussion 
 

In this study, we generated high-quality individual canid genomes, and used them to 

uncover the history of dogs and gray wolves. Interpretation of the phylogenetic signals 

in these genomes was particularly challenging due to high levels of incomplete lineage 

sorting and post-divergence gene flow. We were able to disentangle the effects of these 

factors by using an array of recently developed statistical methods that together 

provided a detailed and robust inference of past demography for these canids.  We 

used methods that rely on different aspects of this dataset: 1) whole-genome patterns of 

heterozygosity in single individuals (PSMC), 2) a subset of sites that are informative for 

post-divergence admixture (ABBA/BABA analyses) and 3) a set of neutral loci analyzed 

across all individuals jointly (G-PhoCS).   

 We found evidence of wolf-dog admixture in two divergent dog lineages (Basenji 

and Dingo). The fact that these lineages have been isolated from wolves geographically 

in the recent past suggests that this gene flow was ancestral and thus likely impacted 

multiple (if not most) dog lineages (Pickrell & Pritchard 2012; Vilà et al. 2005). 

Admixture has likely complicated previous inferences of dog origins. For instance, the 

presence of long shared haplotypes in Middle East wolves with several dog breeds 

(Vonholdt et al. 2010) may reflect historic admixture rather than recent divergence. 

Similarly, higher genetic diversity in East Asian dogs and affinities between East Asian 

village dogs and wolves (Pang et al. 2009; Savolainen et al. 2002; Wang et al. 2013) 

may be confounded by past admixture with wolves.  In areas where village dogs (Boyko 

et al. 2009) roam freely and wolves have historically been in close proximity, admixture 



	
  
 

may also be present and have non-trivial impact on patterns of genetic variation (Larson 

& Burger 2013).  

 Our inferences of ancestral population size from PSMC reveals an unexpected, 

roughly threefold population bottleneck in wolves. With PSMC, we detect the start of this 

bottleneck as early as 20 kya, while with G-PhoCS the bottleneck occurs at the timing of 

dog-wolf divergence, approximately 15kya. As our cross-validation between these two 

methods indicated that the timing of abrupt changes in Ne are overestimated by PSMC 

(Figure 2.6-2.10, more comparisons on Text S9 from Freedman et al. 2014), we place 

more confidence in the more recent date inferred with G-PhoCS. The bottleneck in 

wolves appears to have occurred before modern direct extermination campaigns by 

humans and within the timeframe of environmental and biotic changes associated with 

the ending of the Pleistocene. Although the specific cause of this bottleneck is unknown, 

it has important implications for understanding the process of dog domestication. 

Because of this bottleneck, we expect that at the onset of domestication, there was 

substantially more genetic diversity for selection to act on than observed in modern 

wolves.  Direct comparisons of dog and wolf diversity (such as comparisons of 

heterozygosity) will not show as large a difference and thus previous studies that did not 

consider a wolf population decline (Kerstin Lindblad-Toh et al. 2005; Melissa M Gray et 

al. 2009) have underestimated the bottleneck associated with domestication. These 

previous studies estimated a two to fourfold reduction in dog Ne,, a far milder population 

contraction than the at least 16-fold reduction we infer here. 

Overall, the genomes in this study reveal a dynamic and complex genetic history 

interrelating dogs and wolves. One question that remains unanswered has to do with 



	
  
 

the geographic origins of dogs and the wolf lineage most closely related to them. Our 

analysis suggests that none of the sampled wolf populations is more closely related to 

dogs than any of the others and that dogs diverged from wolves at about the same time 

that the sampled wolf populations diverged from each other. One possible implication of 

this finding is that a more closely related wolf population exists today, but was not 

represented by our samples. We consider this unlikely, as we sampled the three major 

putative domestication regions, and previous SNP array studies have shown that wolf 

populations are only weakly differentiated, indicating that our sampled wolves should 

serve as good proxies for wolves in each broad geographic region (Vonholdt et al. 

2010).  

Another alternative is that the wolf population (or populations) from which dogs 

originated has gone extinct and the current wolf diversity from each region represents 

novel younger wolf lineages, as suggested by their recent divergence from each other. 

Our inference that wolves have gone through bottlenecks across Eurasia suggests a 

dynamic period for wolf populations over the last 20,000 years and that extinction of 

particular lineages is not inconceivable. Indeed, several external lines of evidence 

provide support for substantial turnover in wolf lineages. For example, ancient DNA, 

isotope, and morphologic evidence identify a divergent North American Late 

Pleistocene wolf (Leonard et al. 2007) and in Eurasia, similarly distinct wolves exist in 

the early archaeological record in Northern Europe and Russia, 15-36kya (Ovodov et al. 

2011; Germonpré et al. 2012; Germonpré et al. 2009). Presumed changes in available 

prey (e.g. megafaunal extinctions) as habitats shrunk with the expansion of humans and 

agriculture also suggest the plausibility of wolf population declines and lineage turnover.  



	
  
 

A remaining alternative for our inferred population phylogeny is that the basal lineage 

was absorbed into the three lineages sampled. Such a hypothesis is questionable 

though, as it requires there to be enough effective gene flow among the three wolf 

lineages such that no single lineage today serves best as a proxy for the basal lineage 

in our analysis. If true, the hypothesis that dogs were originally domesticated from a 

now-extinct wolf population suggests that ancient DNA studies will play a central role in 

advancing our understanding of the rapid transition from a large, aggressive carnivore 

to the omnivorous domestic companion that is a fixture of modern civilization. 

 

  



	
  
 

Bottlenecks and selective sweeps during 
domestication have increased deleterious genetic 

variation in dogs 
 

The research from this chapter is contained in two papers: 

 

* Denotes equal contributions 

Marsden CD*, Ortega-Del Vecchyo D*, O’Brien DP, Taylor JF, Ramirez O, Vilà C, 

Marques-Bonet T, Schnabel RD, Wayne RK, Lohmueller KE. Bottlenecks and selective 

sweeps during domestication have increased deleterious genetic variation in dogs. 

Proceedings of the National Academy of Sciences of the United States of America. 

2016; 113: 152-157. 

 

Ortega-Del Vecchyo D, Marsden CD, Lohmueller KE. PReFerSim: Fast simulation of 

demography and selection under the Poisson Random Field model 

 

Introduction 
 

Many of the mutations that arise in genomes are weakly deleterious and reduce fitness 

but are not always eliminated from the population by purifying natural selection. 

Consequently, understanding the reasons why deleterious mutations persist in 

populations and the role of demographic history in this process is of considerable 

interest (Lohmueller 2014a; Lohmueller et al. 2008; Simons et al. 2014; Do et al. 2015; 

Fu et al. 2014; Henn et al. 2015; Gazave et al. 2013; Peischl et al. 2013; Schubert et al. 

2014) . The radiation of domestic dogs offers a unique opportunity to address these 



	
  
 

questions. Dogs were originally domesticated from ancestral gray wolf populations 

>15,000 years ago in a process involving one or more severe population bottlenecks 

(Freedman et al. 2014; Boyko 2011; vonHoldt et al. 2010). The more recent formation of 

modern dog breeds, which occurred over the last 300 years, involved additional 

population bottlenecks, intense artificial selection and inbreeding (K. Lindblad-Toh et al. 

2005; Boyko 2011). Although this history is predicted to have resulted in the 

accumulation of deleterious variants, its specific effect on genome-wide patterns of 

deleterious variation remains unclear.  

Here, we utilize complete genome sequencing data from 46 dogs representing 34 

breeds, 25 village dogs, and 19 wolves to directly examine patterns of deleterious 

genetic variation across the dog genome. As over half of these data derive from our 

own sequencing efforts, this project represents the largest survey of dog genetic 

diversity based on genome sequences to date. Overall, we find that population 

bottlenecks associated with domestication have resulted in a proportional increase of 

amino acid changing variants in dogs relative to wolves and also have led to an 

increase in the additive genetic load in dogs relative to wolves. Our results indicate that 

the domestication process has dramatically re-shaped patterns of deleterious variation 

across the dog genome. 

 

Results 
 

3.1 Description of the data 
 



	
  
 

Using a combination of in-house generated data (n = 52) and published sequences (n = 

38); (Auton et al. 2013; Wang et al. 2013; Zhang et al. 2014), we collated a dataset of 

90 canid whole genomes representing 46 breed dogs, 25 village dogs, 19 gray wolves 

as well as a single genome from a golden jackal to polarize ancestral and derived 

states. Our analyses focused on patterns of genetic diversity at putatively neutral sites 

far from genes, four-fold degenerate sites (non-amino acid changing coding variants) 

and zero-fold degenerate sites (amino acid changing coding variants). 

We divided our dataset into two groups based on sequencing coverage. The first 

group contains the subset of genomes with high sequencing coverage (>15x) 

comprising 25 breed dogs and 10 wolves. For this dataset we called individual 

genotypes using GATK (DePristo et al. 2011). The second group consists of all 90 canid 

genomes. Many of these genomes have low sequence depth where genotype calls are 

less reliable. For these data, we estimated per individual heterozygosity (i.e. average 

pairwise differences between sequences) using a maximum likelihood approach based 

directly on the resampling of 4 sequence reads per site using the script FourSite 

(https://github.com/LohmuellerLab; SI from Marsden et al., 2016). 

To assess the performance of this method, we compared our read-based 

estimates of heterozygosity to those from genotypes called using GATK (DePristo et al. 

2011) on a subset of high-coverage genomes. We found the two estimates of 

heterozygosity to be highly concordant, suggesting that our estimator performs well 

(Figure 3.1). Importantly, because our read-based estimator was applied to subsamples 

of only four reads per individual, it is appropriate even for the lower-coverage genomes. 

 



	
  
 

 

Fig. 3.1: Comparison of the read-based estimator of heterozygosity (FourSite) to the 

estimates based on GATK for high coverage individuals.  

Lines denote the diagonal. Each blue point represents a breed dog. Each red point 

represents a wolf. Note the close correspondence between the estimates of 

heterozygosity obtained using FourSite to those from GATK. Importantly, only 4 reads 

per individual per site were used with FourSite while all the reads that passed our 

quality filters were used for calling genotypes with GATK. 
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3.2 Genome-wide patterns of deleterious variation 
 

Because we typically have only 1-2 genomes per breed/population, we first focus on 

patterns of heterozygosity. To evaluate the role of population size in affecting 

deleterious variation, we calculate the ratio of 0-fold to 4-fold heterozygosity (Fay et al. 

2001; Elyashiv et al. 2010; Akashi et al. 2012). This ratio is an estimate of the proportion 

of amino acid changing mutations that are not removed by selection. Assuming constant 

selection coefficients across populations, changes in this ratio indicate that 

demographic effects modulate the efficacy of selection. We chose this metric because it 

quantifies how demography affects selection without estimating parameters in complex 

demographic models for all populations (Akashi et al. 2012; Elyashiv et al. 2010).  

In our data, the ratio of 0-fold heterozygosity to 4-fold heterozygosity shows a 

strong negative correlation with levels of neutral heterozygosity (Pearson’s r = -0.534, 

P<6 x 10-8, Fig. 3.2B; Fig. 3.2C; Fig 3.3A and Table 3.1). Breed dogs have lower levels 

of neutral heterozygosity than wolves, consistent with their bottlenecked demographic 

history. However, they show disproportionately higher levels of amino acid (0-fold) 

heterozygosity (Fig. 3.2B). This result is concordant with previous estimates based on 

more limited data (a single boxer genome and mtDNA data (Cruz et al. 2008; 

Björnerfeldt et al. 2006)) and suggests that the proportional elevation in deleterious 

amino acid variation in dogs relative to wolves is seen across a wide range of breeds. 

Much of this pattern is driven by the difference between breed dogs and wolves. It 

diminishes when analyzing them separately (Fig. 3.3B), though statistical power also is 



	
  
 

reduced. Patterns of neutral heterozygosity in the village dogs fall between those of 

breed dogs and wolves, consistent with their intermediate effective population size and 

variable levels of admixture between modern and ancient breeds (Shannon et al. 2015). 

However, the ratio of 0-fold to 4-fold heterozygosity in village dogs depends to some 

degree on the filters employed and is either similar to that in breed dogs or intermediate 

to that of dogs and wolves (Fig 3.3C). Interestingly, several wolf populations appear to 

show lower levels of neutral heterozygosity and higher ratios of 0-fold to 4-fold 

heterozygosity than breed dogs. These include the Tibetan wolves, which were 

previously shown to have very low genetic diversity (Zhang et al. 2014) and the Isle 

Royale wolf, which is a highly inbred island population derived from two founders in the 

1950s ((Wayne et al. 1991). The negative correlation in Fig. 1 is unlikely to be driven by 

hypermutable CpG sites (Fig. 3.3C) or regions affected by selective sweeps (Fig. 3.3D), 

as it persists after removing these genomic features. 

 
Table 3.1: Comparison of the regression parameter estimates across different data sets 
 

Dataset	
   Intercept	
   SE	
  
Lower	
  

CI	
  

Upper	
  

CI	
  
Slope	
   SE	
  

Lower	
  

CI	
  

Upper	
  

CI	
  

High	
  

Coverage*	
  
0.2759	
   0.0035	
   0.2691	
   0.2827	
   -­‐21.8183	
   2.8901	
   -­‐16.1537	
   -­‐27.4828	
  

Foursite	
  

on	
  high	
  

coverage#	
  

0.2921	
   0.0048	
   0.2827	
   0.3016	
   -­‐28.5896	
   3.7965	
   -­‐21.1484	
   -­‐36.0308	
  

FourSite	
   0.3003	
   0.0062	
   0.2878	
   0.3124	
   -­‐28.4416	
   4.8208	
   -­‐18.9929	
   -­‐37.8903	
  



	
  
 

low-­‐

coverage	
  

	
  

 

*Denotes the estimates from the 35 high coverage genomes where genotypes were 

called using GATK. 

#Denotes the estimates from the 35 high coverage genomes that were treated analyzed 

as low-coverage genomes. We sampled four reads per site and estimated 

heterozygosity using FourSite.  
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Fig. 3.2. Population history and deleterious genetic variation. (A) Conceptual model 

of dog domestication used in population genetic simulations. Box widths are 

proportional to estimated population sizes (Table 3.2). (B) The ratio of 0-fold to 4-fold 

heterozygosity vs. neutral genetic diversity. Observed heterozygosity is based on four 

reads per individual. The larger circles represent the trimmed median values for each 

population group and the error bars denote 95% confidence intervals on the trimmed 

median for each population group. Triangles denote the Tibetan wolves. A square 

denotes the Isle Royale wolf. The solid black line denotes the best-fit linear regression 

line (Intercept = 0.301, slope = -29.00, r = -0.534, P < 6 x 10-8). The dashed line 

denotes the best-fit linear regression line from forward simulations of demography and 

negative selection (SI Appendix, Tables S4 and S7). (C) The ratio of 0-fold to 4-fold 

heterozygosity vs. neutral genetic diversity in the 35 high-coverage genomes where 

genotypes were called using GATK. The solid black line denotes the best-fit linear 

regression line (Intercept = 0.276, slope = -21.40, r = -0.777, P < 5 x 10-8) and the 

dashed line is as described in (B).  

 



	
  
 

 

Fig. 3.3. The ratio of 0-fold to 4-fold heterozygosity is negatively correlated with neutral 

genetic diversity. 

(A) This analysis uses 35 high coverage genomes treated as though they have lower-

coverage. We sampled 4 reads per site and estimated heterozygosity using FourSite. 

The solid line denotes the best-fit linear regression line (Intercept = 0.276, slope = -21.4, 

r = 0.78, P < 5 x 10-8). (B) This analysis considers dogs (blue) and wolves (red) 

separately. Heterozygosity was computed using four reads per individual. The dashed 

line denotes the best-fit linear regression line (Intercept = 0.30, slope = -31.4, r = -0.674, 

P < 6 x 10-10) for both breed dogs and wolves together. Dogs show a slight negative 
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relationship (solid line over blue points; Intercept = 0.29, slope = -17.82, r = -0.30 P = 

0.043) while wolves do not (solid line over red points; Intercept = 0.26, slope = -8.75, r = 

-0.185, P = 0.45). However, due to the limited sample size, statistical power is 

diminished within each group. (C) This analysis filters CpG sites. Heterozygosity was 

computed using four reads per individual. Error bars denote 95% confidence intervals 

on the trimmed median for each population group. The solid line denotes the best-fit 

linear regression line (Intercept = 0.350, slope = -39.09, r = -0.468, P < 4 x 10-6). (D) 

This analysis filters sites near a selective sweep. Heterozygosity was computed using 

four reads per individual. Error bars denote 95% confidence intervals on the trimmed 

median for each population group. The solid line denotes the best-fit linear regression 

line (Intercept = 0.294, slope = -23.50, r = -0.430, P < 3 x 10-5). 

 

3.3 Forward-in-time simulations using PReFerSim 
 

I modified a forward-in-time simulator previously designed by Kirk Lohmueller 

(Lohmueller 2014b) to make it capable of modeling demographic scenarios with many 

population size change events, different distributions of fitness effects, changes in the 

relaxation of selective constraints and in the inbreeding coefficients through time. 

Additionally, I added options to print nine different sets of summary statistics of genetic 

variation and the possibility to follow allele frequency trajectories conditioning on the 

present-day allele frequency. The interface of inputs and output files from the program 

was also modified to make it more user-friendly and to facilitate the use of the software 

in computing clusters. The program, PReFerSim, is available on: 

https://github.com/LohmuellerLab/PReFerSim 



	
  
 

PReFerSim performs simulations under the Poisson Random Field model, where 

it is assumed that the number of independent mutations arising each generation follows 

a Poisson distribution with a mean equal to 2Niul, where Ni is the effective population 

size in generation i, u is the mutation rate and l is the number of independent sites being 

simulated. Each simulation replicate was performed assuming a sequence length of 10 

million independent sites, where each site can contain one or two alleles and only one 

mutation can take place in each site. Since its emergence, the frequency of a mutation 

pi+1 in successive generations follows a binomial distribution Bin(Ni+1,p’), where: 

p ' = (1− s)(p2 + Fpq)+ (1− hs)pq(1− F)
q2 + pqF + (1− hs)2pq(1− F)+ (1− s)(p2 + Fpq) , 

and p is the frequency of the derived allele in generation Ni, q is the frequency of the 

ancestral allele, s is the selection coefficient, F is the inbreeding coefficient and h is the 

dominance coefficient. For neutral sites, the value of s is equal to 0. Synonymous sites 

were also assumed to be neutral and had a value of s equal to 0. Values of s for 

nonsynonymous mutations were drawn from a gamma distribution of selective effects 

assuming that, unless otherwise noted, all the mutations were additive (h = 0.5). 

Simulations were performed under a variety of models of population history. See below 

for further details on the mutations rates, demographic models, and distributions of 

selective effects used in the simulations.  

At the end of the simulation, we sampled individual animals and computed their 

heterozygosity. Because some of our simulations included recent inbreeding, and 

inbreeding results in an increase in homozygosity relative to a randomly mating 

population, we included its effects in computing heterozygosity. Specifically, the 



	
  
 

genotype for animal i at site j was drawn from a multinomial distribution with 

probabilities: 

P(Genotype) =

pj
2 + pjqjF

2pjqj (1− F)

qj
2 + pjqjF

⎧

⎨
⎪⎪

⎩
⎪
⎪

Homozygous for the derived allele
Heterozygous

Homozygous for the ancestral allele
, 

 where pj is the frequency of the derived allele in the population at site j, qj is the 

frequency of the ancestral allele at site j and F is the inbreeding coefficient used in the 

simulation. 

Heterozygosity was computed by dividing the number of heterozygous sites over 

the number of sites simulated per simulation replicate (10 million). We also determined 

the proportion of heterozygous sites when sampling one allele from two different canids. 

To do this, we sampled two genotypes following the previous equation. Then, we 

sampled one allele from each of the two genotypes and determined that the site was 

heterozygous if the two sampled alleles were different. The total proportion of 

heterozygous sites in two dogs was obtained by dividing the number of heterozygous 

sites by the number of sites simulated. 

We accounted for differences in mutation rates (µ) across 0-fold, 4-fold, and 

neutral sites using the following approach. First, we assume that CpG sites have a 10-

fold higher mutation rate than do non-CpG sites. The mutation rates employed for the 

neutral, 0-fold and 4-fold sites used for the simulations were dependent on the 

proportion of CpG sites found within those three categories of sites in humans and our 

data. We then obtained estimates for the proportion of CpG sites in different functional 

categories from the literature. (Veeramah et al. 2014) found that in humans 5.75% of 



	
  
 

the autosomal 0-fold sites were CpG sites while 9.1% of the autosomal 4-fold sites were 

CpG sites. To estimate the proportion of CpG sites in neutral variants, we observed that 

when we looked for all the mutations involving a ‘CG’ motif (i.e., any site after a C and 

any site before a G) from our data, where not necessarily all of those ‘CG’ motifs were 

CpG sites, we observed that ‘CG’ motifs were 9.1% more frequent in 0-fold sites than in 

neutral sites. This suggested that there should be around 9.1% more CpG sites in 0-fold 

sites as compared to neutral sites. Therefore, we reasoned that the proportion of CpG 

sites in neutral sites was equal to 5.27%. Using these numbers, we obtained the 

mutation rates of different categories of sites as: 

, 

where P(CpG) is the proportion of sites that are CpGs in that category of sites and B is 

the background mutation rate for non-CpG sites. The factor of 10 indicates the assumed 

10-fold increase in the mutation rate at CpG cites. We began with a neutral mutation 

rate of µ = 2 x10-8. Then, for neutral sites with P(CpG) = 5.27%, we obtain B = 1.356 

x10-8. That equation can also be used to obtain the mutation rate for 0-fold and 4-fold 

sites by using that same value of B and replacing P(CpG) by 5.75% and 9.1%, 

respectively. Using this procedure we obtain mutation rates of µ = 2.468 x10-8 for 4-fold 

sites and µ = 2.059 x10-8 for 0-fold sites. These mutation rates were used for the 

forward simulations. 

We examined three different models of population history for canids. First, we 

used the demographic model for wolves and dogs inferred in Freedman et al. 

(Freedman et al. 2014) as a basis to simulate genetic variation that mimics the 

demographic history of wolves, village dogs and breed dogs (Table 3.2). Because we 

µ = P(CpG)(10)(B)+ (1− P(CpG))(B)



	
  
 

assumed a per-base pair per-generation neutral mutation rate of 2 x10-8, and Freedman 

et al. assumed a mutation rate of 1 x 10-8, we rescaled the Ne and divergence times 

from the Freedman et al. study. Breed dogs were assumed to have been formed 100 

generations ago to be consistent with the historical records and previous work (M. M. 

Gray et al. 2009; Boyko 2011). This breed formation was modeled as a decrease in 

population size. We explored different realistic effective population sizes for the most 

recent (around 2,500) generations in all populations to assess their effect on neutral 

heterozygosity and the ratio of nonsynonymous to neutral site heterozygosity. The 

values shown in SI Appendix, Table 3.2 show the final parameter values used in the 

simulations. Our second scenario also used the Freedman et al. (Freedman et al. 2014) 

demographic model as a backbone. But, here we increased the effective population size 

in the second epoch from 44,993 to 60,000 individuals. As expected, this model showed 

higher values of neutral heterozygosity. The parameters of this model are given in SI 

Appendix, Table 3.3. Finally, the third model that we considered was that fit to village 

dogs and wolves by Wang et al. (Wang et al. 2013) (Table 3.4). We made several 

simplifying assumptions and replaced exponential growth with piece-wise constant 

population sizes (Table 3.4). 

 

  



	
  
 

Table 3.2: Forward simulation parameters based on the Freedman et al. demographic 

model  

Epoch 1 denotes the ancestral population size. Epoch 4 denotes the current effective 

population size for Wolves and Village Dogs while Epoch 5 represents the current 

effective population size for Breed Dogs. This demographic model was used for the 

regression line presented in Fig. 3.2B. 

 

Table 3.3: Forward simulation parameters based on the Freedman et al. model with 

larger ancestral population sizes  

 Wolves Village Dogs Breed Dogs 

 Number of 

chromosomes 

(2Ne) 

Number of 

generations 

Number of 

chromosomes 

(2Ne) 

Number of 

generations 

Number of 

chromosomes 

(2Ne) 

Number of 

generations 

 Wolves Village Dogs Breed Dogs 

 Number of 

chromosomes 

(2Ne) 

Number of 

generations 

Number of 

chromosomes 

(2Ne ) 

Number of 

generations 

Number of 

chromosomes 

(2Ne ) 

Number of 

generations 

Epoch 1 18,169 145,352 18,169 145,352 18,169 145,352 

Epoch 2 44,993 63,898 44,993 63,898 44,993 63,898 

Epoch 3 24,000 237 1999 347 1999 347 

Epoch 4 30,000 2243 15,000 2133 8000 2033 

Epoch 5 - - - - 1000 100 



	
  
 

Epoch 1 18,169 145,352 18,169 145,352 18,169 145,352 

Epoch 2 60,000 63,898 60,000 63,898 60,000 63,898 

Epoch 3 2400 237 1999 347 1999 347 

Epoch 4 30,000 2243 15,000 2133 8000 2033 

Epoch 5 - - - - 1000 100 

Epoch 1 denotes the ancestral population size. Epoch 4 denotes the current effective 

population size for Wolves and Village Dogs while Epoch 5 represents the current 

effective population size for Breed Dogs. 

  



	
  
 

Table 3.4: Forward simulation parameters based on the Wang et al. model  

 Wolves Village Dogs Breed Dogs 

 Number of 

chromosomes 

(2Ne) 

Number of 

generations 

Number of 

chromosomes 

(2Ne) 

Number of 

generations 

Number of 

chromosomes 

(2Ne) 

Number of 

generations 

Epoch 1 35,000 280,000 35,000 280,000 35,000 280,000 

Epoch 2 33,020 3556 5666 2556 5666 2,556 

Epoch 3 - - 11,332 1000 11,332 900 

Epoch 4 - - - - 200 100 

Epoch 1 denotes the ancestral population size. Epoch 2 denotes the current effective 

population size for Wolves, Epoch 3 is the current effective population size for Village 

Dogs and Epoch 4 represents the current effective population size for Breed Dogs 

 

Because the distribution of selective effects has not been estimated for new 

nonsynonymous mutations in dogs, the optimal parameters to use are not immediately 

clear. Thus, we examined different distributions of selective effects for new 

nonsynonymous mutations (Table 3.5). First we used estimates from other species. We 

fully acknowledge the distribution of selective effects may vary across species and 

these values may not be appropriate for dogs. However, our goal here is to determine 

whether plausible distributions of selective effects combined with demography can 

generate the qualitative patterns seen in our data, rather than perform a rigorous 

assessment of model fit. First, we used the gamma distribution that had been fit to 

human nonsynonymous SNP data by Boyko et al. (A. R. Boyko et al. 2008). Second, we 



	
  
 

used a gamma distribution that had been fit to nonsynonymous SNPs in 10 M. m. 

castaneus individuals (D. L. Halligan et al. 2013). Importantly, because the ß (or scale) 

parameters of the gamma distribution are typically estimated as the population scaled 

selection coefficients (2Ns), we converted values of 2Ns drawn from the distribution into 

values of s by dividing by twice the relevant population (Table 3.5).  

However, we found that both of these distributions of selective effects did not 

match the regression parameters relating the 0-fold/4-fold ratio and neutral 

heterozygosity for the observed data (Figure 3.4-3.5). In particular the Boyko et al. (A. 

R. Boyko et al. 2008) model from humans predicted a 0-fold/4-fold ratio that was too low 

compared to our data. This suggests that our data contains more nearly neutral (s < 

0.0001) mutations than had been estimated from humans. Models including a few 

percent more mutations with s < 0.0001 better fit the observed data. The Halligan et al. 

mouse (D. L. Halligan et al. 2013) model (Table 3.5), which includes more mutations 

with s < 0.0001, better matches the observed 0-fold/4-fold ratio in dogs, but does not 

have a steep enough slope. This model contains too few moderately deleterious 

mutations  (0.0001 < s < 0.01) that could be effectively removed by selection from the 

wolf population, but persist due to drift in dogs. 

There are several possible reasons for this lack of fit of previous models to our 

data. First, the distribution of selective effects could be different in dogs than in humans 

and mice. The human and mouse distributions appear to differ from each other (Table 

3.5), supporting the notion that this distribution may not be constant across species. 

Second, our simulations used to generate the relationship between the 0-fold/4-fold 

heterozygosity ratio and neutral heterozygosity assume that all variants are independent 



	
  
 

of each other. If the real data includes substantial Hill-Robertson effects, then the data 

could differ from our simulations, even when the correct distribution of selective effects 

was used. Third, the distribution of selective effects may differ between dogs and 

wolves, perhaps because of domestication. If more new genetic variants in dogs 

became neutral after domestication, they may be able to drift to higher frequency, 

increasing the 0-fold/4-fold ratio. More detailed work on the distribution of selective 

effects in dogs and wolves is needed to distinguish among these possibilities. 

  



	
  
 

Table 3.5: Parameters for the gamma distributions of selective effects on new mutations 

used in forward simulations of demography and selection   

Model	
   α	
   β	
   N	
   %	
  

mutation

s	
  

s<0.0001	
  

%	
  

mutation

s	
  

0.0001<s	
  

<	
  0.001	
  

%	
  

mutation

s	
  

0.001<s<

0.01	
  

%	
  

mutation

s	
  s>0.01	
  

Boyko	
  (A.	
  

R.	
  Boyko	
  

et	
  al.	
  

2008)	
  

0.184	
   319.8626	
   1000	
   27.89	
   14.68	
   21.90	
   35.54	
  

Mice	
  (D.	
  

L.	
  

Halligan	
  

et	
  al.	
  

2013)	
  

0.11	
   8,636,364	
   106	
   32.6	
   9.40	
   12.10	
   45.86	
  

Gamma	
  

Test	
  1	
  

0.25	
   250	
   10000	
   33.00	
   24.86	
   32.91	
   9.23	
  

Gamma	
  

Test	
  2	
  

0.3	
   100	
   10000	
   34.30	
   31.44	
   32.06	
   2.21	
  

 

α denotes the shape parameter of the distribution of selective effects while β denotes 

the scale parameter. N refers to the population size that the beta parameter was scaled 



	
  
 

by. Remaining columns provide the proportions of new mutations having different 

selection coefficients. The regression line from the Gamma Test 2 distribution is shown 

in Fig. 3.2B. 

 

Because previously published distributions of selective effects appeared to not match 

the observed data, we explored several additional custom gamma distributions (Table 

3.5). We found that models including a greater proportion of weakly deleterious (s < 

0.001) and fewer strongly deleterious (s > 0.01) mutations provided a better fit to the 

data. In particular, a gamma distribution with a shape parameter of 0.3 and scale 

parameter of 0.05 (in terms of s) predicted regression coefficients intermediate between 

those seen in the low and high coverage datasets (Fig. 3.2B) under the Freedman et al. 

demographic model shown in Table 3.2. Under the Wang et al. demographic model 

(Table 3.4), a gamma distribution with a shape parameter of 0.25 and scale parameter 

of 0.125 reasonably predicts the observed regression parameters (Figure 3.4-3.5).  

While these distributions mimic the empirical patterns, other more complex distributions 

may be more biologically reasonable. As discussed above, further work on the 

distribution of selective effects is necessary to distinguish among these possibilities. 



	
  
 

 

Fig. 3.4: Ratio of 0-fold to 4-fold heterozygosity vs. neutral heterozygosity from the 

forward simulations under different models of demography and selection.  

Rows denote the different demographic models. “Freedman” refers to the Freedman et	
  

al.	
  model	
  (Table	
  3.2).	
  “Freedman	
  large”	
  refers	
  to	
  the	
  Freedman	
  et	
  al.	
  model,	
  but	
  increasing	
  

the	
  size	
  of	
  the	
  ancient	
  population	
  size	
  (Table	
  3.3).	
  “Wang”	
  denotes	
  our	
  implementation	
  of	
  

the	
  model	
  fit	
  in	
  Wang	
  et	
  al.	
  (Table	
  3.4).	
  Columns	
  denote	
  different	
  distributions	
  of	
  selective	
  

effects	
  (Table	
  3.5).	
  Lines	
  are	
  from	
  the	
  best-­‐fit	
   linear	
  regression.	
  Blue	
  points	
  denote	
  breed	
  

dogs,	
   green	
   points	
   denote	
   village	
   dogs,	
   and	
   red	
   points	
   represent	
   wolves.	
   In	
   all	
   cases,	
  

models	
  of	
  demography	
  and	
  selection	
  predict	
  a	
  negative	
  relationship	
  between	
  the	
  ratio	
  of	
  0-­‐

fold	
  to	
  4-­‐fold	
  heterozygosity	
  vs.	
  neutral	
  heterozygosity.	
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Fig. 3.5: Models of purifying selection and demography predict a similar negative 

relationship between 0-fold/4-fold heterozygosity and neutral heterozygosity as seen in 

the high quality genomes.  

Rows denote the different demographic models (Table Columns denote different 

distributions of selective effects (Table 3.5). Dark solid black lines are from the best-fit 

linear regression of the simulations under the particular model. The gray shaded region 

denotes the 95% CI on the linear regression line calculated from the 35 high quality 

genomes (e.g., the data shown in Fig. 3.2B). The dark blue and red points represent the 

trimmed medians from the observed data from the breed dogs and wolves, respectively. 
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The whiskers denote 95% CIs on the trimmed medians. Note that the Gamma Test 2 

distribution of selective effects best fits the observed relationship between 0-fold/4-fold 

heterozygosity and neutral heterozygosity under the Freedman demographic model. 

The Gamma Test 1 distribution also provides a good fit under the Wang demographic 

model. 

We also performed a set of simulations where all mutations were recessive. Here we 

used the demographic model shown in Table 3.2. We used two different distributions of 

selective effects, the gamma distribution inferred in Boyko et al. as well as our Gamma 

Test 2 distribution. Overall, we found that the intercept of the regression of the 0-fold/4-

fold heterozygosity ratio on neutral heterozygosity was higher with recessive effects 

than additive effects (Fig 3.4 with Fig 3.6). This finding is not surprising because, for the 

same distribution of s, recessive mutations are only selected against in the homozygous 

state and can thus drift up in frequency and persist in the population more easily than 

variants with additive effects. In contrast to the additive case, the slope of the regression 

was weakly positive when assuming fully recessive mutations. This result is in 

agreement with the recent theoretical findings of Balick et al. (Balick et al. 2015). 

Essentially, recessive alleles that survive during a bottleneck will have drifted to higher 

frequency and have a higher probability of being in the homozygous state compared to 

the same alleles in non-bottlenecked populations. When in the homozygous state, the 

recessive deleterious mutations can be removed by selection, leading to the decrease 

in the 0-fold/4-fold ratio in the bottlenecked population relative to the non-bottlenecked 

population. Because these simulations do not match the patterns seen in our data, and 

simulations including additive effects provide a better fit, we conclude that most 



	
  
 

segregating amino acid changing variants in dogs and wolves are probably not fully 

recessive. They may be fully additive, however. 

 

 

 

Fig. 3.6: Models with recessive effects predict a positive relationship between 0-fold/4-

fold heterozygosity and neutral heterozygosity.  

Breed dogs are in blue, village dogs in green, and wolves in red. All simulations 

assumed h=0 and the demographic parameters shown in Table 3.2. Columns denote 

different distributions of selective effects Table 3.5. The shaded gray lines denote the 

regression parameters from the simulations including additive effects. The clouds of 

blue, green, and red points denote the results of the simulations assuming recessive 

effects.  

 

3.4 The role of recent inbreeding 
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Dogs from some breeds are homozygous for large (>1Mb) regions of the genome, 

suggesting recent mating among close relatives (i.e. inbreeding (Boyko et al. 2010), Fig 

3.8). This inbreeding can reduce the effective population size, allowing deleterious 

alleles to drift higher in frequency and is a mechanism commonly assumed to account 

for the accumulation of deleterious mutations in dog genomes (McGreevy & Nicholas 

1999) but has not been formally assessed. Based on three distinct analyses, we find 

that recent inbreeding is not driving the patterns shown in Fig. 3.2.  

First, we conducted additional forward simulations including negative selection 

and recent inbreeding within breed dogs. Even strong inbreeding (F = 0.2) over the last 

300 years, without the bottlenecks associated with domestication and breed formation, 

is insufficient to generate the observed negative relationship between the 0-fold/4-fold 

heterozygosity ratio and neutral heterozygosity (Fig. 3.7A). Second, we attempted to 

remove the effects of recent inbreeding on our analysis of heterozygosity. Because 

recent inbreeding increases the probability that two chromosomes within a given 

individual share a common ancestor with each other rather than with a chromosome 

from another individual (Fig 3.8A), it will reduce within-individual heterozygosity relative 

to between-individual heterozygosity (Wright 1951). Thus, we can obtain an estimate of 

heterozygosity removing the effects of inbreeding by sampling a single read from each 

individual at each site and determining whether the reads have different nucleotides. 

Forward simulations indicate that this approach removes the effects of recent 

inbreeding on heterozygosity (Fig 3.8B, Fig 3.8C). However, in contrast, in the actual 

data, neutral heterozygosity computed from two canids remains negatively correlated 

with the ratio of 0-fold to 4-fold heterozygosity (Fig. 3.8B), suggesting recent inbreeding 



	
  
 

is not the cause of the association. Finally, when removing large runs of homozygosity 

(>2 MB) from our analyses, the negative relationship between neutral heterozygosity 

and the ratio of 0-fold to heterozygosity to 4-fold heterozygosity remained strong (Fig. 

3.7C), indicating that it was not driven by patterns of variation within regions of the 

genome most affected by inbreeding. These unexpected findings imply that population 

bottlenecks, rather than recent inbreeding, are responsible for the proportional increase 

in amino-acid changing heterozygosity in breed dogs relative to wolves. 

 

 

Fig. 3.7. Recent inbreeding does not drive the relationship between neutral 

heterozygosity and the 0-fold/4-fold heterozygosity ratio. (A) Forward simulations 

using a demographic model that includes inbreeding over the last 100 generations, but 

not bottlenecks associated with domestication or breed formation (“wolf” demographic 

model in Table 3.2). (B) Empirical results from computing heterozygosity using one read 

from each of two individuals per population. The solid line denotes the best-fit linear 

regression line (Intercept = 0.288, slope = -27.25, r = -0.502, P = 0.024). (C) The 

relationship between neutral polymorphism and the ratio of 0-fold to 4-fold 

heterozygosity persists when removing runs of homozygosity. The solid black line 
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denotes the best-fit linear regression line (Intercept = 0.276, slope = -21.40, r = -0.534, 

P < 5 x 10-8). This plot uses the same data as in Fig. 3.2C, but removing ROHs. Red 

triangles denote the Tibetan wolves. 

 

 

Fig. 3.8: Estimating heterozygosity using one chromosome from each of two individuals 

removes the effects of recent inbreeding.  

(A) Inbreeding results in an increase in the probability that two chromosomes within an 

individual share a recent common ancestor with each other than with a chromosome in 

a different individual (i.e. chromosomes of the same color have a higher probability of 

coalescing with each other that with chromosomes of a different color). This will lead to 



	
  
 

a reduction in heterozygosity (left panel). By computing heterozygosity from one read 

from each individual (i.e. from different colored chromosomes, right panel), we will 

remove this effect of inbreeding.  (B) Forward simulations using the breed dog 

demographic model including population bottleneck along with 100 generations of 

inbreeding (model from Freedman et al., SI Appendix, Table S4) show a slight negative 

correlation between the ratio of 0–fold to 4-fold heterozygosity and neutral 

heterozygosity. This suggests recent inbreeding in certain dog breeds may slightly 

increase the 0-fold to 4-fold ratio. Lines denote the regression between the ratio of 0–

fold to 4-fold heterozygosity vs. neutral heterozygosity. (C) Same simulations as in (B), 

except here heterozygosity is computed using one chromosome from each of two dogs. 

Sampling from two dogs eliminates the reduction in heterozygosity due to recent 

inbreeding as well as the weak negative correlation seen in (B).  

 

Discussion 
 

Our results show that the domestication process has dramatically affected patterns of 

deleterious variation across the dog genome. First, population history has had a 

genome-wide effect which increases the burden of deleterious variation in breed dogs 

as indicated by an elevated level of amino-acid changing variation relative to wolves 

where selection is more efficacious. Our demographic models suggest that repeated 

population bottlenecks and small effective population size have had a more profound 

effect on the accumulation of weakly deleterious variation than does recent inbreeding 

(i.e., mating between close relatives). Consequently, to minimize the accumulation of 

deleterious variation in the increasing number of species suffering from habitat loss and 



	
  
 

fragmentation, conservation efforts should focus on maintaining sufficient population 

sizes in the wild and captivity, rather than focusing exclusively on inbreeding avoidance. 

Finally, our approach provides a comprehensive method for evaluating deleterious 

variation from genome data in the small isolated and threatened populations worldwide 

that can help prioritize their genetic management. 

  



	
  
 

Inference of the distribution of fitness effects of 
segregating variants using haplotypic information 

 

Introduction 
 

The distribution of fitness effects is one of the most important determinants of Evolution 

(Eyre-Walker & Keightley 2007). Apart of its importance to the neutral theory and to 

determine current levels of genetic variation, it is also relevant to understand current 

phenotypic variation, since the distribution of fitness effects can influence the evolution 

of complex phenotypic traits (Lohmueller 2014b; Mancuso et al. 2015; Eyre-Walker 

2010). Methods to estimate the distribution of selective coefficients using the site 

frequency spectrum and the PRF framework have been recently developed (Keightley & 

Eyre-Walker 2007; Adam R Boyko et al. 2008a; Loewe et al. 2006). These methods 

infer the distribution of fitness effects of new mutations and can only indirectly infer the 

distribution of fitness effects of observed mutations. Estimating the fitness effects of 

observed mutations is relevant to validate predictions of the nearly neutral theory, which 

predicts that most of the observed variation should be nearly neutral, and also is of 

interest in debates regarding the deleterious segregating variation observed in different 

populations. 

Recent large sample size haplotype datasets have been recently generated and provide 

an important source of information to quantify the strength of selection acting on 

segregating variants. They are particularly important because they facilitate the finding 

of low-frequency variants, where we should found most of the deleterious genetic 

variation. An important source of information that we can extract from these datasets 



	
  
 

comes from the linked variation around putatively functional low frequency variants. 

Using data from the Netherlands Genome Project, (Kiezun et al. 2013) found that, 

conditioning on the variants having a certain frequency in the population, 

nonsynonymous variants have a higher linkage with neighboring neutral variation 

compared to synonymous variants. This is in line with Takeo Maruyama’s results 

showing that deleterious variants at a certain frequency have a younger age compared 

to neutral variants, implying that you should also expect to see less variation around 

deleterious variants. 

Here we propose an approach to use patterns of linkage disequilibrium to infer the 

strength of natural selection acting on variants at a certain frequency in the population. 

Our approach uses information from the pairwise identity by state lengths L to infer the 

distribution of fitness effects acting on putatively functional variants at a certain 

frequency. This approach is the first one to estimate selection conditioning on the 

present-day frequency of the allele and can help us improve our understanding of how 

selection is impacting the vast amount of low-frequency variants present in a population. 

We discuss how our method can be used to distinguish between alleles under positive 

and negative selection in non-equilibrium demographic scenarios. Finally, we also 

present results to show how the distribution of fitness effects of alleles at a particular 

frequency can be applied to infer the distribution of fitness effects of new mutations.  

 

Results 
 

2.1	
  Inference	
  of	
  selection	
  
 



	
  
 

Our question of interest is to infer what is the strength of selection acting on variants at 

an allele frequency f in the present. The allele frequency in the present can be defined 

either as the population allele frequency, defined as the actual frequency of the allele in 

the population, or the sample allele frequency, which is the allele frequency calculated 

after sampling a set of chromosomes from the population. We inferred the strength of 

natural selection using a linkage disequilibrium statistic that measures the length of 

pairwise haplotypic identity by state (L). This statistic calculates the distance to the first 

difference between a pair of phased haplotypes that contain a particular allele a. L can 

be measured going both to the right and left side of this allele a. The values of L are 

defined with respect to a set of discrete non overlapping windows W ={w1, w2, … , wn} 

that extend from the physical position of the allele to the right or left side of a. If the first 

difference between the pair of phased haplotypes falls inside a window wi, then the 

value of L is equal to wi for this particular pair of haplotypes. Our inference method uses 

information of many values of L = {L1, L2, L3, … Ln} from pairs of haplotypes that contain 

alleles at that particular frequency f.  

The likelihood of having a particular selection coefficient s conditioning on the allele 

frequency f using information from one length 𝐿 = 𝑤! can be estimated as: 

𝑃 𝐿 = 𝑤! 𝑠, 𝑓 = ℒ(𝑠, 𝑓) = 𝑃 𝐿 = 𝑤! 𝐻! 𝑃 𝐻! 𝑠, 𝑓 𝑑𝐻 

Where Hi is a particular allele frequency trajectory. We can compute 𝑃 𝐿 = 𝑤! 𝐻!  via 

Monte Carlo simulations done using mssel (Kindly provided by Richard Hudson), which 

assumes the structured coalescent model to simulate haplotypes containing a site 

whose frequency trajectory is determined by Hi. We used mssel to simulate many pairs 

of haplotypes (in the order of thousands or tens of thousands) given an allele frequency 



	
  
 

trajectory Hi and we computed the L value for each pair of haplotypes. We can use that 

distribution of L values for a given allele frequency Hi to find the probability 𝑃 𝐿 = 𝑤! 𝐻!  

that L falls in a certain window wi. One important point about these Monte-Carlo 

simulations is that we can add any information we possess about the recombination rate 

variation present in a particular region to avoid biases in the values of L due to an 

incorrect modeling of the recombination rate in the simulations. 

The likelihood ℒ(𝑠, 𝑓)  is found by integrating over the space of allele frequency 

trajectories that end at a frequency f in the present and have a selection coefficient s. 

One possible way to perform that integration step is to perform many simulations under 

the assumptions of the Poisson Random Field framework (PRF) and utilize rejection 

sampling to only keep those trajectories that end at a frequency f in the present. Under 

the PRF model, the number of mutations that enter the population each generation have 

a Poisson distribution with mean 2NimL = Θ/2, they are independent and the frequency 

of each mutation changes each generation following a Wright-Fisher model with 

selection. We could generate many allele frequency trajectories under this framework 

given a particular value of s and just keep those trajectories that end at a frequency of f. 

However, this is inefficient and computationally demanding, since a lot of allele 

frequency trajectories will not end at a frequency f in the present. And it is particularly 

more challenging if we wish to calculate ℒ(𝑠, 𝑓) for a grid of values of s. In the next two 

sections we show an alternative approach we took to perform an efficient integration 

over the space of allele frequency trajectories given s and f using importance sampling. 

 



	
  
 

2.2 Importance sampling 
 

Broadly, the idea behind importance sampling approaches is that we have a “target” 

distribution f(x) and we would like to take a large number of samples from that 

distribution. In this case, the “target” distribution f(x) is the set of trajectories that end at 

frequency f in the present. If we wanted to estimate expectations from that target 

distribution using a Monte Carlo method, we could take a set of samples (x1, x2,…,xn) 

from the distribution f(x) and then use the following equation: 

 

𝐸 𝑓 𝑥 = 𝑓(𝑥!)
!

!!!
 

 

In our case, sampling from this “target” distribution is complicated because when we 

simulate allele frequency trajectories going forward in time, the vast majority of them do 

not end at a frequency f in the present. In the importance sampling framework, the idea 

is to choose a “proposal” distribution g(x) from which we can easily sample random 

values X. Then, making use of the equality !(!)
!(!)

= 1, we can estimate the expected value 

of f(x) by using the following equation: 

  

𝐸 𝑓 𝑥 =
𝑔 𝑥!
𝑔 𝑥!

𝑓 𝑥! =
!

!!!

𝑓 𝑥!
𝑔 𝑥!

𝑔 𝑥!
!

!!!
 

 

Then, we define a variable ω! =
!(!!)
!(!!)

 and: 

𝐸 𝑓 𝑥 = ω!𝑔 𝑥!
!

!!!
 



	
  
 

  

In cases where either f(x) or g(x) are missing a normalizing constant so that their area 

under the curve is equal to 1, we must employ a self-normalized importance sampling 

estimator (Robert & Casella 2010): 

 

𝐸 𝑓 𝑥 =
ω!𝑔 𝑥!!

!!!

𝑔(𝑥!)!
!!!

 

 

The selection of the “proposal” distribution g(x) is critical in the importance sampling 

framework to accurately estimate the expected values of f(x). The goal overall is that the 

random variables simulated under g(x) could often be obtained by sampling under f(x). 

A useful metric in this regard is the effective sample size ESS, which is equal to (Robert 

& Casella 2010): 

 

𝐸𝑆𝑆 =
1
ω!

!
!!!

 

Where: 

ω! =
ω!

ω!!
!!!

 

The ESS tells you the sample size used in a Monte-Carlo evaluation of f(x) that is 

equivalent to the importance sampling approach estimate. The ESS takes values 

between 1 and n, where a higher value of the ESS indicates that more samples from 

g(x) are contributing to the estimate of the expected f(x). This is a necessary, but not 

sufficient, condition to obtain an accurate estimate of the expected value of f(x) when 

using an importance sampling approach. Values of ESS close to 1 indicate that few 



	
  
 

replicates of g(x) are making a contribution of the expected value of f(x), and therefore, 

the estimated expected value of f(x) is probably not accurate.  

 

2.3 Integration over the space of allele frequency trajectories using importance 
sampling 
 

(TODO.- Need to add the beta-binomial step to go from sample frequency to the 

frequency in the first generation) 

 

To find the likelihood ℒ(𝑠, 𝑓) over many different values of s, we performed an efficient 

integration over the space of allele frequency trajectories using the importance sampling 

approach developed by (Slatkin 2001) with a modification regarding the proposal 

distribution we use. Here, the “target” distribution 𝑓 𝑥 = 𝑃(𝐻!|𝑠, 𝑓) are samples of allele 

frequency trajectories that end at a frequency of f and have a selection coefficient s. 

Following Slatkin (2001), given a derived allele a we can define the fitness of the 

genotypes AA, Aa and aa as 1, 1+s and 1+2s, respectively. We can define the trajectory 

Hi of an allele as the number of copies of the allele a per generation since the allele 

appeared in the population. Therefore, 𝐻! = {𝑖! , 𝑖!!!, 𝑖!!!,… , 𝑖!, 𝑖!, 𝑖!} , where 𝑖! = 0 , 

𝑖!!! = 1  and 𝑖! = 𝑓 ∗ 𝑁! . The effective population sizes at those times are 𝑁 =

{𝑁! ,𝑁!!!,𝑁!!!,… ,𝑁!,𝑁!,𝑁!}. The allele appears in generation T-1, where it has 1 copy 

in the population. In the present, the allele has a frequency f in the present and the 

number of copies is equal to f * N0. 



	
  
 

Under a Wright-Fisher model with selection, the probability of moving from 𝑖! to 𝑖!!! 

copies of the allele is equal to: 

 

𝑃 𝑖!!! 𝑖! = 𝑝!!,!!!! =
2𝑁!!!
𝑖!!!

𝑥!
!!!!!(1− 𝑥!!)!!!!!!!!!! 

Where: 

 

𝑥!! = 𝑥!
1+ 2𝑠𝑥! + 𝑠(1− 𝑥!)

1+ 2𝑠𝑥!! + 2𝑠𝑥!(1− 𝑥!)
 

The frequency of the allele at generation t is 𝑥! =
!!
!!!

. Finally, the probability of the 

whole allele frequency trajectory Hi is then equal to: 

𝑃 𝐻! 𝑠, 𝑓 = 𝑓 𝑥 = 𝑝!!,!!!!
!

!!!!!
 

As a “proposal” distribution g(x), we use a Wright-Fisher neutral model, with one 

modification, where the frequency of the allele is equal to f in the present. This allows us 

to make sure that the allele has the frequency f that we want in the present. Under this 

proposal distribution, we are going to move backwards in time assuming that the allele 

is neutral. Under this proposal distribution, if 𝑖!!! = 1, then 𝑖! can take any value from 0 

to 2𝑁!. If 𝑖!!! = 0  or 2𝑁! then we stop the allele frequency trajectory. If 𝑖!!! is bigger 

than 1 and smaller than 2𝑁!, then 𝑖! can take any value from 1 to 2𝑁!. Those three rules 

are used together to make sure that each trajectory going forward in time goes from 0 to 

1 copy of the allele always. 

Under the proposal distribution we use, the transition probabilities of going from 𝑖!!! 

alleles in generation t-1 to 𝑖! alleles in generation 𝑖! is: 



	
  
 

𝑃 𝑖! 𝑖!!! = 𝑞!!!!,!! =

2𝑁!
𝑖!

𝑥!!!
!! (1− 𝑥!!!)!!!!!!

1− 2𝑁!
𝑖!

𝑥!!!! (1− 𝑥!!!)!!!
            𝑖𝑓  𝑖!!! = 2,2𝑁!   𝑎𝑛𝑑  𝑖! > 0  

2𝑁!
𝑖!

𝑥!!!
!! (1− 𝑥!!!)!!!!!!         𝑖𝑓  𝑖!!! = 1  

0    𝑖𝑓  1)  𝑖!!! = 0  𝑜𝑟  2𝑁!  ; 2)  𝑖!!! = 2,2𝑁!   𝑎𝑛𝑑  𝑖! = 0    

 

Where 𝑥!!! =
!!!!
!!!!!

. By generating an allele frequency trajectory with this proposal 

distribution, we can get the probability of any sample from this proposal distribution g(x): 

𝑔 𝑥 = 𝑞!!!!,!!
!

!!!
 

 

Now that we have defined how to sample allele frequency trajectories using our 

proposal distribution, we can compute the weight for every simulated allele frequency 

trajectory from g(x) as ω! =
!(!!)
!(!!)

. For some of the proposed trajectories under g(x), the 

trajectory will end up at a frequency of 1 going backwards into the past , instead of 0. 

The value of ω! for those trajectories is 0. 

The expected value that we wish to obtain with this problem is 𝑃 𝐿 = 𝑤! 𝑠, 𝑓 . Under the 

importance sampling framework, this would be equal to: 

 

𝑃 𝐿 = 𝑤! 𝑠, 𝑓 = ℒ(𝑠, 𝑓) =
ω!𝑃 𝐿 = 𝑤! 𝐻!!

!!!

ω!
!
!!!

 

 

Using this approach, we can estimate 𝑃 𝐿 = 𝑤! 𝑠, 𝑓  for different values of s using the 

same set of allele frequency trajectories generated from our proposal distribution. This 

alleviates the need to simulate a different set of allele frequency trajectories for each 



	
  
 

value of the selection coefficient s that we want to evaluate and follows the idea of a 

driving value (Fearnhead & Donnelly 2001). The only values that we need to change to 

evaluate 𝑃 𝐿 = 𝑤! 𝑠, 𝑓  are the importance sampling weights ω!, where we will change 

the value of 𝑃 𝐻! 𝑠, 𝑓 = 𝑓 𝑥  depending on the value of the selection coefficient s 

evaluated.  

Finally, given a set of values L={L1, L2, L3, … Ln}, we can estimate the composite 

likelihood of having that set of L values as: 

 

ℒ(𝑠, 𝑓) = 𝑃 𝐿 = 𝑤! 𝑠, 𝑓
!

!!!
 

 

2.4 Estimation of selection in constant population sizes 
 

We performed forward-in-time simulations under the Poisson Random Field (PRF) 

framework using PReFerSim to obtain a set of 10,000 allele frequency trajectories from 

alleles under a particular strength of selection that were sampled at a 1% frequency in 

the present in a sample of 4,000 chromosomes (see Methods). We ran many repetitions 

of PReFerSim using a value of Θ equal to 1,000 until we obtained 10,000 alleles 

frequency trajectories where 𝑝=1% using 5 different values of selection (4Ns = 0, -50, -

100, 50, 100). To do this, in each repetition we first ran PReFerSim to obtain a list of 

alleles where 𝑝=1%, Then, we ran PReFerSim again using the same random seed and 

printing the allele frequency trajectory of the alleles were 𝑝=1%. 

 



	
  
 

Using the 10,000 recorded allele frequency trajectories for each selection value 4Ns, we 

calculated the mean allele frequency across many generations going backwards into 

the past to obtain an average frequency trajectory (Figure 4.1A). The average allele 

frequency trajectory for neutral alleles (4Ns = 0) is kept at higher values during more 

time going backwards in time compared to alleles under natural selection, indicating that 

1% frequency neutral alleles can persist during a longer time compared to alleles under 

selection. Another interesting feature is that alleles under the same absolute strength of 

selection have a remarkably similar average allele frequency trajectory, regardless of 

whether the allele is under positive or negative selection. However, there are slight but 

significant differences in the average allele frequency trajectory between alleles under 

positive and negative selection that share the same absolute value of 4Ns. Across all 

generations, the mean allele frequency has significant differences in 7 out of the 10 

most recent generations between alleles with a 4Ns = 50 versus alleles with 4Ns = -50 

(two-tailed Welch’s t-test, p-value < 0.05) with a mean difference in frequency of 1.5e-4 

when there are significant differences between the mean allele frequencies. When we 

compare the average allele frequency trajectory of alleles with a 4Ns = -100 against 

alleles with a 4Ns = 100, we find significant differences only in 126 out of the 150 most 

recent generations (two-tailed Welch’s t-test, p-value < 0.05) with a mean difference of 

2e-4 when the differences in frequency are significant.  The difference in allele 

frequency in those recent generations is due to the fact that the actual population allele 

frequency for alleles under negative selection in the present is lower in alleles sampled 

at a 1% frequency in the population as compared to alleles under positive selection. 

This implies that, in this demographic scenario, alleles under negative selection tend to 



	
  
 

actually have a lower frequency in the population when we sample them at a frequency 

of 1% compared to alleles under positive selection that share the same absolute value 

of 4Ns. On the other hand, when we sample trajectories that end at a population allele 

frequency of 1%, in contrast to sampling trajectories that end at a sample allele 

frequency of 1%, we see no significant differences at any time in the average frequency 

trajectories of alleles under positive and negative selection that have the same absolute 

value of 4Ns (Figure 5.2B). 

 

 

 

 



	
  
 

 

Figure 4.1.- Properties of alleles sampled at a 1% frequency under different 

strengths of natural selection in a demographic scenario with a constant 

population size (N = 10,000). Using forward-in-time simulations under the PRF model, 

we obtained 10,000 frequency trajectories for 1% frequency alleles under different 

strengths of selection. Using those frequency trajectories, we calculated: A) The mean 

allele frequency at different times in the past, in units of generations, to obtain an 

average frequency trajectory; B) The probability distribution of allele ages and C) The 

probability distribution of pairwise coalescent times T2. Below B) and C), we show a dot 
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with two whiskers extending at both sides of the dot. The dot represents the mean value 

of the distribution and the two whiskers extend one s.d. below or above the mean. The 

whisker that extends one s.d. below the mean is constrained to extend until max(mean 

– s.d. ,0).  In this demographic scenario, the alleles under a higher absolute strength of 

selection have younger ages and younger T2 on average.  The fact that alleles under 

higher strengths of selection have younger average T2 values implies that those alleles 

tend to have larger L values as shown in D). 

 



	
  
 

	
  

Figure 4.2.- Properties of alleles sampled at a 1% population allele frequency 

under different strengths of natural selection in a constant population size 

scenario. A) Population model analyzed. B) Mean allele frequency at different times in 

the past, in units of generations. C) Probability distribution of allele ages and D) 

Probability distribution of pairwise coalescent times T2. The dot and whiskers below C) 

and D) represent the mean value of the distribution and the two whiskers extend at both 

sides of the mean until max(mean +- s.d. ,0).  
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We estimated the distribution of allele ages, defined as the number of generations ago 

when the allele emerged in the population, based on the 10,000 recorded allele 

frequency trajectories for each 4Ns value. We found that the distribution of ages on 

alleles under higher absolute values of 4Ns has a younger mean age and has a smaller 

standard deviation. The mean value of the ages are also is in close agreement with 

Maruyama’s theoretical results, although they don’t match exactly (Table 4.1). It is 

expected that the estimates from Maruyama’s results and our simulations do not exactly 

match, since Maruyama’s results assume that the population is in the diffusion limit, 

where the population size tends to infinity and 4Ns tends to a fixed value. 

 

 

 

  



	
  
 

Table 4.1.- Comparison of estimates of the mean allele age of a 1% frequency variant in 

a demographic scenario of a constant population size (N = 10,000).  The theoretical 

estimates were obtained by Maruyama (1974) and assume that the populations are in 

the diffusion limit, where N tends to infinity and the value of 4Ns tends to a fixed 

constant. We report two estimates of allele age from forward-in-time simulations using 

10,000 forward-in-time allele frequency trajectories. One of the estimates uses alleles 

that were sampled at a 1% frequency based on a sample of 4,000 chromosomes. The 

other estimate is based on alleles that have a 1% population allele frequency.  We also 

report the standard deviation of the allele ages, shown inside parenthesis, for the 

forward-in-time simulations. 

	
  

4Ns	
   0	
   -­‐50	
   50	
   -­‐100	
   100	
  

Maruyama’s	
  

theoretical	
  

estimates	
  

1840	
   632	
   632	
   452	
   452	
  

Forward-­‐in-­‐

time	
  

simulation	
  

estimates	
  

(based	
  on	
  the	
  

sample	
  allele	
  

frequency)	
  

1872.69	
  

(5295.08)	
  

641.49	
  

(636.20)	
  

649.00	
  

(635.53)	
  

462.68	
  

(371.32)	
  

468.42	
  

(377.05)	
  

Forward-­‐in-­‐ 1820.33	
   658.03	
   656.10	
   471.87	
   472.17	
  



	
  
 

time	
  

simulation	
  

estimates	
  

(based	
  on	
  the	
  

population	
  	
  

allele	
  

frequency)	
  

(5019.22)	
   (638.23)	
   (630.65)	
   (373.64)	
   (377.18)	
  

 

We discretized and compressed each of the allele frequency trajectories according to a 

set of allele frequency boundaries to reduce the computing time needed to simulate 

haplotypes under the structured coalescent model with mssel. We then used each 

compressed allele frequency trajectory to estimate the distribution of pairwise 

coalescent times T2 between a pair of haplotypes containing the allele changing in 

frequency. For each compressed allele frequency trajectory, we estimated the 

probability of coalescing at a time t as: 

 

𝑃 𝑇! = 𝑡 =    1−
1
𝑁𝑎!

!!!

!!!

1
𝑁𝑎!

 

Where 𝑁𝑎!  denotes the number of individuals that have the derived allele a at 

generation x. Additionally, due to the way we compressed the allele frequency 

trajectories, where the allele frequency at the time that the allele emerges is not equal to 

1/2N, the probability of T2 in the generation e where the allele appears is equal to 

1− 𝑃(𝑇! = 𝑡)!!!
!!! . We averaged the probabilities of T2 over all the simulated allele 

frequency trajectories given a particular value of 4Ns to obtain the distribution of T2 



	
  
 

given a value of 4Ns. Additionally, we also confirmed that this distribution of T2 given T2 

was correct by using an alternative method that employed simulations of 1,000 T2 

values in each allele frequency trajectory and then averaging over all the frequency 

trajectories obtained with a value of 4Ns to obtain the distribution of T2 given 4Ns 

(Figure SX TO-DO). 

 

The distribution of pairwise coalescent times T2 across different values of 4Ns shows 

that alleles under higher absolute values of 4Ns have a more recent average value of 

T2, and their distribution of T2 has a smaller standard deviation (Figure 4.1C). As shown 

in Figure 4.1D, this implies that alleles under stronger absolute selection coefficients will 

have younger average ages and T2. The fact that T2 is younger in alleles under stronger 

selection coefficients, will lead to fewer mutations between haplotypes sharing the allele 

and higher average values of L, the statistic that we will employ to estimate the strength 

of selection acting in alleles sampled at a particular frequency in the population.  

 

To infer selection, we took pairs of haplotypes that contained an allele at a 1% 

frequency in the population and then we divided the physical distance (in bp) 

surrounding the allele into 5 consecutive windows of 50 kb plus one extra window 

containing any distance bigger than 250 kb (Figure 4.3A). We resampled from the 

10,000 simulated allele frequency trajectories given each 4Ns value to perform 1 million 

simulations of pairs of haplotypes containing alleles at a 1% frequency under different 

strengths of selection. We estimated L in each of those pairs of haplotypes to create a 

probability distribution function of L given a set of 1% frequency alleles under different 



	
  
 

strengths of selection. We found that alleles under the same absolute strength of 

selection have almost identical distributions of L (Figure 4.3B), a result in line with the 

similarities seen in the distribution of T2 values for alleles under the same absolute 

strength of natural selection (Figure 4.1C). Since our inference method relies on 

differences in the distribution of L between alleles under different strengths of selection, 

this indicates that we should not have power to distinguish between alleles under the 

same absolute strength of selection, something that we corroborated in Figure 4.3C. We 

see that our method can accurately predict when an allele is neutral (4Ns = 0). 

However, in alleles under a strength of selection equal to -50 or 50, we see that the 

estimated values of selection tend to be similarly distributed around values of -50 or 50.  

The same trend is seen for alleles under a strength of selection equal to -100 or 100 

(Figure 4.3C). When we display the estimated strength of selection in terms of absolute 

values of 4Ns, we see that our method produces an accurate estimate of the absolute 

strength of selection (Figure 4.3D). This indicates that our method can provide 

reasonable estimates of the absolute strength of natural selection in this demographic 

model, but cannot differentiate well between alleles under negative or positive selection. 

In constant population sizes, it is likely that no method would be able to distinguish 

between positively and negatively selected alleles at a frequency f due to the very slight 

differences in their mean allele frequency trajectories.  

 



	
  
 

 

 

Figure 4.3.- Estimation of the strength of natural selection in a constant 

population size model. A) The physical distance in bp near an allele is divided into 5 

non-overlapping equidistant windows of 50kb, with an extra window w6 indicating that 

there are no differences in the 250 kb next to the allele.  B) The probability distribution 

of L given a 1% frequency allele and different values of 4Ns. C) Estimated selection 

values. D) Estimated selection values when we plot the estimated selection values as 

absolute 4Ns values. 

●

A) Windows of pairwise haplotypic
 identity by state lengths (L)

0.5

0.
5

0.
05

0.
15

0.
25

0.
35

B) Probability Distribution of L
given a 1% frequency allele

L

Pr
ob

ab
ilit

y

w1 w2 w3 w4 w5 w6

4Ns
−100
−50
0
50
100

−1
50

−1
00

−5
0

0
50

10
0

15
0

0 50 −50 100 −100

C) Inference of Selection

Real 4Ns values

Es
tim

at
ed

 4
N

s 
va

lu
es

0
50

10
0

15
0

0 50 −50 100 −100

D) Inference of Selection
 in terms of |4Ns| values

Real 4Ns values

Es
tim

at
ed

 |4
N

s|
 v

al
ue

s



	
  
 

 

 

2.5 Estimation of selection in non-equilibrium demographic scenarios 
 

We used forward-in-time simulations to analyze the changes in frequency of alleles that 

have a 1% frequency in non-equilibrium demographic scenarios. First, we analyzed the 

shape of the average allele frequency trajectory in a population expansion scenario 

(Figure 4.4A) for alleles with different 4Ns values. In stark contrast with a constant 

population size scenario, we found that alleles under positive or negative selection show 

very distinct allele frequency trajectories. Alleles under positive selection keep 

increasing in frequency after the population expansion. On the other hand, alleles under 

negative selection increase in frequency before the expansion. After the expansion, the 

efficacy of selection increases due to the higher effective population size. This effect 

provokes that deleterious alleles decrease in frequency in the population until they 

reach an allele frequency value close to 1% (Figure 3B). The ages of alleles under the 

strongest absolute values of selection tend to be younger, although alleles under 

positive and negative selection that share the same |4Ns| value do not have the same 

mean allele age value and have a different standard deviation (Figure 3C). Another 

important distinction between the population expansion model and the constant 

population size model lies on the distribution of T2, which is sensitive to differences in 

the sign of 4Ns under our inspected population expansion model. In the values of 4Ns 

that we inspected, we found that each of those values had a clearly different distribution 

of T2. Alleles under the stronger positive selection had, on average, younger T2 values. 

This is in agreement with their average allele frequency trajectory, which shows the 



	
  
 

most rapid decrease in frequency. When we contrasted the T2 distribution of the 

negatively selected alleles inspected (4Ns = -50, -100), we saw that their mean T2 value 

did not differ much, and their biggest difference relied on a slightly smaller standard 

deviation in the most deleterious allele (Figure 4.4D). 

 

We used our method to infer the strength of selection in this demographic scenario and 

found that it provided accurate estimates of the strength of selection (Figure 4.5). In line 

with the differences found in the distribution of T2 values between positively and 

negatively selected alleles sharing the same |4Ns| value, we found that our method was 

capable of inferring the strength of selection regardless the sign of the selection 

coefficient s. Therefore, under this non-equilibrium model it is possible to distinguish 

between alleles under positive and negative selection using haplotypic patterns. This 

does not mean we can differentiate between positive and negative selection in all non-

equilibrium models. This will be dependent on the parameters of the non-equilibrium 

demography being studied. As an example, we show how in an ancient bottleneck there 

are not significant differences in the distribution of T2 between alleles that have the 

same absolute strength of selection (Figure 4.6), pointing that we would not be able to 

differentiate between under positive or negative selection under this demographic 

model. 

 



	
  
 

 

Figure 4.4.- Properties of alleles sampled at a 1% frequency under different 

strengths of natural selection in a population expansion scenario. A) Population 

expansion model analyzed. B) Mean allele frequency at different times in the past, in 

units of generations. Note that alleles under the same absolute strength of selection 

(4Ns) have a very different average allele frequency trajectory, in contrast to the 

constant population size scenario; C) Probability distribution of allele ages and D) 

Probability distribution of pairwise coalescent times T2. The dot and whiskers below C) 
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and D) represent the mean value of the distribution and the two whiskers extend at both 

sides of the mean until max(mean +- s.d. ,0). 

 

 

Figure 4.5.- Estimation of the strength of natural selection in a population 

expansion model. 
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Figure 4.6.- Properties of alleles sampled at a 1% frequency under different 

strengths of natural selection in an scenario with a bottleneck that took place 

5,000 generations ago. A) Population expansion model analyzed. B) Mean allele 

frequency at different times in the past, in units of generations. Note that alleles under 

the same absolute strength of selection (4Ns) have a very different average allele 

frequency trajectory, in contrast to the constant population size scenario; C) Probability 

distribution of allele ages and D) Probability distribution of pairwise coalescent times T2. 
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The dot and whiskers below C) and D) represent the mean value of the distribution and 

the two whiskers extend at both sides of the mean until max(mean +- s.d. ,0). 

 

2.6 Inference of the distribution of fitness effects of variants at a particular 
frequency 
 

All of the variants present at a certain frequency in the population are likely to have 

different selection coefficients associated to them. We can also apply our composite 

likelihood framework to find the distribution of selection coefficients that better explain 

the distribution of L values seen in variants at a particular frequency. The probability of 

having a certain distribution of identity by state lengths L given a demographic scenario 

D, a set of variants at a frequency f and a distribution of selective coefficients 𝑔(4𝑁𝑠) is 

equal to: 

 

𝑃 𝐿 = 𝑤! 𝑔 4𝑁𝑠 ,𝐷, 𝑓 = 𝑃 𝐿 4𝑁𝑠, 𝑓,𝐷 𝑃(4𝑁𝑠|𝑔 4𝑁𝑠 )𝑑𝛾
!

!!!!
 

Using the past equation, we tested if the distribution of haplotype lengths L can be used 

to estimate the parameters that define the distribution of fitness effects of variants at a 

particular frequency. We used distributions of L values obtained via simulations under 

the constant population size and population expansion demographic model from the 

past sections under two distributions of fitness effect of new mutations estimated in 

different species: one from humans (Adam R Boyko et al. 2008b) and another one from 

mice (Daniel L. Halligan et al. 2013). 



	
  
 

We found that the estimated parameters of the DFE of 1% frequency variants do not 

cluster exactly around the actual parameters of the DFE of 1% frequency variants 

(Figure 4.7). However, they are responsive to changes in the DFE of new mutations 

employed to simulate the variants. This can be better seen by contrasting Figure 4.7A 

and Figure 4.7B, where the product of the estimated parameters of scale and shape in 

the Human DFE (Figure 4.7A) tends to be higher than that of the Mouse (Figure 4.7B). 

This is relevant because the result of that product gives the mean 2Ns values from the 

distribution. Therefore, we tend to have small variation in the estimated 4Ns values 

estimated with our approach in constant population sizes, as seen in Figure 4.8A and 

Figure 4.8B. 

The demographic scenario used affects the estimates of the DFE. Under a constant 

population size, the estimates of the DFE follow a decay that resembles a curve. Note 

that this curve decay causes the product of the scale and shape parameters to keep 

relatively similar values. Under a population expansion model, the estimates of the 

shape and scale show a wider variation (Figure 4.7C and Figure 4.7D). This is in line 

with our results shown in Figure 4.3D and 4.1D, where we show that there are not as 

much differences in the pairwise coalescent time distribution between variants with 

different negative selection coefficients in a population expansion scenario as compared 

with a constant population size scenario. Due to the bigger variation in the estimates of 

the parameters that define the DFE of variants at a 1% frequency, we also see a bigger 

variation in the mean 4Ns values estimated in a population expansion as compared to a 

constant population size (Figure 4.7). 



	
  
 

 

Figure 4.7.- Estimates of the distribution of fitness effect of variants at a 1% 

frequency. We tested if our method was capable of estimating the parameters of the 

DFE of variants at a particular frequency in two demographic models and two DFE’s. 

The red dot indicates the scale and shape parameter from a gamma distribution that 

give a better adjustment to the selective coefficient of 50,000 variants at a 1% frequency 

from a particular DFE and demographic model.  Each other dot contains an estimated 

value of the scale and shape parameter inferred from 100,000 L values. 
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Figure 4.8.- Estimation of the mean 4Ns values in 1% frequency variants. The 

boxplots show the distribution of the estimated mean 4Ns values based on the 

estimates of the DFE parameters shown in Figure 5. The red dots show the actual 4Ns 

value from 50,000 1% frequency variants from each particular DFE and demographic   

model employed. 
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2.7 Connecting the distribution of fitness effects of variants at a particular 
frequency with the distribution of fitness effects of new variants 
 

So far we have only been concerned about the distribution of fitness effects of variants 

at a particular frequency in the population. In this section, we want to show how we can 

relate the distribution of fitness effects of variants at a particular frequency in the 

population to the distribution of fitness effects of new variants. To do this, we define that 

the values of 2Ns are contained in an interval [S1,S2]. Then, we can make use of Bayes 

Theorem and define that: 

 

 𝑃 𝐵|𝐶,𝐷 = !(!|!,!,!)  !(!|!,!)
!(!|!,!,!)

 

 

Where the events defined in that formula are: 

A.- The allele has an x% frequency 

B.- Allele has a selection coefficient 2Ns that falls in the interval [S1,S2]. 

C.- Distribution of fitness effects of new mutations. 

D.- Demographic scenario 

 

The information contained across all non-overlapping intervals of [S1,S2] from 0 to 

infinity of P (B |C, D) defines the distribution of fitness effects of new mutations. Since 

this information is independent of the demographic scenario, then P(B|C,D) = P(B|C). 

This is the information we would like to infer. 



	
  
 

P (B|A,C,D) is the distribution of fitness effects of variants at a particular frequency 

given a certain distribution of fitness effects of new mutations and a particular 

demographic scenario. The method proposed in the past section of this paper estimates 

this probability. 

P (A|C,D) is the probability that a variant has a certain frequency given a distribution of 

fitness effects of new mutations and a demographic scenario. This can be easily 

counted both in data and in simulations just by looking at the proportion of variants at a 

certain frequency. 

P (A|B,C,D) is the probability that an allele has a certain frequency given that the allele 

has a selection coefficient contained in a certain interval, that there is a certain 

distribution of fitness effects of new mutations and a certain demographic scenario. To 

simplify the calculation of this probability, we can make the assumption that all the 

mutations in the interval [S1,S2] have very similar selection coefficients, which is more 

likely to be true when the interval is not very big. Under that assumption P(A|B, C, D) = 

P(A| B, D). This probability can be found via forward-in-time simulations, where we 

simulate variants that have a selection coefficient contained in a certain interval [S1,S2] 

in a particular demographic scenario. Then, the proportion of variants in that simulation 

that have a x% frequency is equal to P(A| B, C, D). 

We applied the past equation to obtain an estimate of the distribution of fitness effects 

of new mutations in a population expansion scenario using the distribution of fitness 

effects of new mutations inferred in humans. Given that we have an estimate of P 

(B|A,C,D) by using the L distribution, that we can calculate P (A|C,D) from the data and 



	
  
 

that we estimated P(A| B, D) via simulations, we can recover an estimate of the 

distribution of fitness effects of new mutations via the distribution P(B|C,D) (Figure 4.9). 

 

 

Figure 4.9.- Inferring the distribution of fitness effects of new mutations from the 

distribution of fitness effects of variants at a certain frequency. We use the Boyko 

distribution of fitness effects and a population expansion demographic scenario. Real 

P(2Ns) refers to the distribution of fitness effects of new mutations. Inferred P(2Ns | 1%) 

is one estimate of the distribution of fitness effects using the L distribution; this is 

P(B|A,C,D) from equation X. Inferred P(2Ns) is an estimate of the distribution of fitness 

effects using P(2Ns | 1%) and equation X. 

 

2.8 Inference of the distribution of fitness effects of 1% frequency variants in the 
UK10K dataset 
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We used the UK10K dataset to infer the distribution of fitness effects of 1% frequency 

variants at nonsynonymous sites. First, we combined information from the ALSPAC and 

TwinsUK cohorts to get a total of 3,714 individuals. We estimated the past demographic 

history of the UK10K data using information from the site frequency spectrum at 

synonymous sites. To do this, we employed the program fastNeutrino (Bhaskar et al. 

2015), where we specified that the demographic history for the ancient population 

history that took place more than 920 generations ago is equal to the demographic 

model from (Gravel et al. 2011a). For the most recent time, we specified that there are 

three different epochs of population size change with the timings of the population size 

changes left as free parameters. We used fastNeutrino to inferred 6 demographic 

parameters, the population sizes for the three most recent epochs and the three most 

recent times of population size change. The site frequency spectrum given the 

demographic history inferred by fastNeutrino and the site frequency spectrum in the 

data follow almost identical distributions (Figure 4.10), with the KL divergence between 

those two distributions being equal to 3.466e-05. 

We investigated if it was possible to infer the strength of natural selection based on the 

inferred demographic history (Figure 4.11A). We found that under the inferred 

demographic model, the frequency trajectories of 1% frequency alleles were dissimilar 

between alleles under different strengths of natural selection (Figure 4.11B). In a similar 

way to the population expansion model (Figure 4.4B), we found that deleterious alleles 

tended to more quickly decrease in frequency when population sizes were larger. We 

found that both the distribution of allele ages (Figure 4.11C) and pairwise coalescent 

times T2 (Figure 4.11D) were different for alleles under the same absolute strength of 



	
  
 

selection. The fact that the distribution of pairwise coalescent times is different for 

alleles under the same |4Ns| value indicates that under this demographic model it is 

possible to distinguish between positive and negative selection using haplotype 

signatures. We performed simulations under 5 different strengths of selection and found 

that our method gave accurate estimates of the strength of natural selection (Figure 

4.12). 

We applied our method to the 1% frequency nonsynonymous variants from the UK10K 

dataset. We inferred that nonsynonymous variants have a selection coefficient 4Ns = 0. 

(MORE WORK TO COME IN THE REAL DATA). 

 

 

 



	
  
 

 

Figure 4.10.- Site frequency spectrum from the UK10K dataset compared with the SFS 

obtained using the demographic parameters inferred by fastNeutrino (Bhaskar et al. 

2015) for the three most recent population size epochs and using Gravel’s demographic 

history for the most ancient population sizes (Gravel et al. 2011b). The agreement 

between both distributions, based on the KL divergence is 0.00185. 
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Figure 4.11.- Properties of alleles sampled at a 1% frequency under different 

strengths of natural selection in the demographic scenario inferred in the UK10K 

data. A) Population model inferred in the UK10K dataset. B) Mean allele frequency at 

different times in the past, in units of generations.; C) Probability distribution of allele 

ages and D) Probability distribution of pairwise coalescent times T2. The dot and 
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whiskers below C) and D) represent the mean value of the distribution and the two 

whiskers extend at both sides of the mean until max(mean +- s.d. ,0). 

 

 

Figure 4.12.- Estimation of the strength of natural selection in the demographic 

model inferred in the UK10K dataset. 
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Discussion 
 

We have developed a composite likelihood method to estimate the strength of natural 

selection acting on alleles at a certain frequency in the population. This method takes 

demography into account and uses the differences in the distribution of pairwise identity 

by state lengths L on alleles under different strengths of selection. We found that in a 

constant population size scenario, the distribution of L captures differences in the 

absolute strength of the selection coefficient 4Ns. However, since the distribution of L 

does not differ between advantageous and deleterious alleles under the same strength 

of selection, it is not possible to differentiate between positive and negative selection 

using that particular haplotype signature. More broadly, since the mean allele frequency 

trajectory is almost identical for deleterious and advantageous alleles under the same 

selective constraint, any statistic based on haplotype signatures will be insufficient in 

that scenario to distinguish between positive and negative selection in a model with only 

one selected allele with linked neutral variation surrounding it. 

On the other hand, we found that the distribution of L is sufficient to differentiate 

between advantageous and deleterious alleles under some non-equilibrium 

demographic scenarios, including the demographic scenario inferred from the UK10K 

dataset. This is encouraging, since most of the natural species are very likely to have 

evolved a non-equilibrium demographic scenario and it is precisely in those scenarios 

where we would like to be able to differentiate between alleles under different strengths 

of selection. 



	
  
 

We found a particularly interesting pattern of the mean allele frequency trajectories of 

deleterious alleles segregating at 1% frequency alleles when the population is 

expanding. These alleles tend to increase in frequency when the population size is low. 

However, they decrease in frequency when the population expands due to a higher 

efficacy of selection. This suggest that it is likely that, on average, deleterious alleles 

would tend to come from higher frequencies in the recent past on populations under 

expansion.  

We propose a general strategy to infer the distribution of fitness effects of alleles at a 

particular frequency in the population. Here we used information from the site frequency 

spectrum at synonymous sites to infer a demographic model. However, it is possible to 

use information from other sources such as haplotypic data. After the demographic 

model is inferred, it is possible to calculate the distribution of L given selection and the 

demographic model to use the composite likelihood approach to estimate selection. We 

only explored demographic models where there is one single population changing its 

size in the past. One avenue of future exploration is to understand how the distribution 

of L changes in models where there are more demes and migration is allowed between 

the demes. Migration should not affect the distribution of L for lower frequency alleles, 

since they are more likely to be geographically restricted and gene flow would have a 

smaller effect on the patterns of variation in low frequency variant carrying haplotypes. 

Our method assumes that every variant under putative selection does not appear more 

than once in the population. Recurrent mutations have been found in the population, 

particularly in large-sample size studies such as ExAc. However, recurrent mutations 



	
  
 

are more unlikely for low frequency variants, since there is less time for many mutations 

to appear in the same site on those variants. 

When we estimated parameters that define the DFE of segregating variants, we found 

that our method can provide reasonable estimates of the parameters that would lead to 

estimating an accurate value of the mean of the DFE. However, estimating the variance 

of the DFE accurately is more challenging, as can be seen from the variation of 

estimates of the DFE parameters. 

Although here we analyzed the distribution of fitness effects of nonsynonymous variants 

at a certain frequency, it is possible to determine the distribution of fitness effects of 

variants with a different functional category. One possibility is to try to determine the 

strength of selection of alleles on variants that are predicted to be more deleterious 

based on the fitcons scores or the C-scores (Racimo & Schraiber 2014). This can help 

us to obtain genome-wide estimates of the selection coefficient of variants, based on 

their predicted functional category. This is of particular interest to genome-wide 

association studies, due to the interest in understanding the association between 

associated variants and their selection coefficients on different complex traits.  

  



	
  
 

Appendix - Simulation Command Lines 
 

Command Line 1. G-PhoCS model with the full set of migration bands inferred: 

./macs 13 30000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 –n 1 0.000010 

-n 2 0.000106 -n 3 0.000077 -n 4 0.001044 -n 5 0.000457 -n 6 

0.000217 -n 7 0.000778 -m 2 4 4505.0 -m 4 2 1840.0 -m 3 6 573.0 

-m 6 3 942.0 -m 4 7 58.0 –m 7 4 1162.0 -ej 0.0000403 2 1 -en 

0.0000403 1 0.000032 -em 0.0000403 1 4 0.0 -em 0.0000403 4 1 0.0 

–em 0.0000403 2 4 0.0 -em 0.0000403 4 2 0.0 -ej 0.0000427 3 1 -en 

0.0000427 1 0.000080 -em 0.0000427 1 6 0.0 –em 0.0000427 6 1 0.0 

-em 0.0000427 3 6 0.0 -em 0.0000427 6 3 0.0 -ej 0.0000446 5 4 -

en 0.0000446 4 0.000056 –em 0.0000446 1 4 0.0 -em 0.0000446 4 1 

0.0 -em 0.0000446 4 7 0.0 -em 0.0000446 7 4 0.0 -ej 0.0000449 6 

4 –en 0.0000449 4 0.000505 -em 0.0000449 1 4 0.0 –em 0.0000449 4 

1 0.0 -em 0.0000449 4 7 0.0 -em 0.0000449 7 4 0.0 -ej 0.0000496 

4 1 -en 0.0000496 1 0.001800 –em 0.0000496 1 4 0.0 -em 0.0000496 

4 1 0.0 -em 0.0000496 4 7 0.0 -em 0.0000496 7 4 0.0 -em 

0.0000496 1 7 17.0 -em 0.0000496 7 1 746.0 -ej 0.0013275 7 1 -en 

0.0013275 1 0.000727 -em 0.0013275 1 7 0.0 -em 0.0013275 7 1 0.0 

 

Command Line 2. The model inferred from G-PhoCS but with no gene flow between 

any species at any time: 



	
  
 

./macs 13 30000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 –n 1 0.000010 

-n 2 0.000106 -n 3 0.000077 -n 4 0.001044 -n 5 0.000457 -n 6 

0.000217 -n 7 0.000778 -m 2 4 0.0 –m 4 2 0.0 -m 3 6 0.0 -m 6 3 

0.0 -m 4 7 0.0 -m 7 4 0.0 -ej 0.0000403 2 1 -en 0.0000403 1 

0.000032 –em 0.0000403 1 4 0.0 -em 0.0000403 4 1 0.0 -em 

0.0000403 2 4 0.0 -em 0.0000403 4 2 0.0 -ej 0.0000427 3 1 –en 

0.0000427 1 0.000080 -em 0.0000427 1 6 0.0 –em 0.0000427 6 1 0.0 

-em 0.0000427 3 6 0.0 -em 0.0000427 6 3 0.0 -ej 0.0000446 5 4 -

en 0.0000446 4 0.000056 –em 0.0000446 1 4 0.0 -em 0.0000446 4 1 

0.0 -em 0.0000446 4 7 0.0 -em 0.0000446 7 4 0.0 -ej 0.0000449 6 

4 –en 0.0000449 4 0.000505 -em 0.0000449 1 4 0.0 –em 0.0000449 4 

1 0.0 -em 0.0000449 4 7 0.0 -em 0.0000449 7 4 0.0 -ej 0.0000496 

4 1 -en 0.0000496 1 0.001800 –em 0.0000496 1 4 0.0 -em 0.0000496 

4 1 0.0 -em 0.0000496 4 7 0.0 -em 0.0000496 7 4 0.0 -em 

0.0000496 1 7 0.0 -em 0.0000496 7 1 0.0 -ej 0.0013275 7 1 -en 

0.0013275 1 0.000727 -em 0.0013275 1 7 0.0 -em 0.0013275 7 1 0.0 

 

Command Line 3. The model inferred from G-PhoCS but with only one event of gene 

flow, from the golden jackal to the ancestor of dogs and wolves: 

./macs 13 30000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 –n 1 0.000010 

-n 2 0.000106 -n 3 0.000077 -n 4 0.001044 -n 5 0.000457 -n 6 

0.000217 -n 7 0.000778 -m 2 4 0.0 –m 4 2 0.0 -m 3 6 0.0 -m 6 3 

0.0 -m 4 7 0.0 -m 7 4 0.0 -ej 0.0000403 2 1 -en 0.0000403 1 



	
  
 

0.000032 –em 0.0000403 1 4 0.0 -em 0.0000403 4 1 0.0 -em 

0.0000403 2 4 0.0 -em 0.0000403 4 2 0.0 -ej 0.0000427 3 1 –en 

0.0000427 1 0.000080 -em 0.0000427 1 6 0.0 –em 0.0000427 6 1 0.0 

-em 0.0000427 3 6 0.0 -em 0.0000427 6 3 0.0 -ej 0.0000446 5 4 -

en 0.0000446 4 0.000056 –em 0.0000446 1 4 0.0 -em 0.0000446 4 1 

0.0 -em 0.0000446 4 7 0.0 -em 0.0000446 7 4 0.0 -ej 0.0000449 6 

4 –en 0.0000449 4 0.000505 -em 0.0000449 1 4 0.0 –em 0.0000449 4 

1 0.0 -em 0.0000449 4 7 0.0 -em 0.0000449 7 4 0.0 -ej 0.0000496 

4 1 -en 0.0000496 1 0.001800 –em 0.0000496 1 4 0.0 -em 0.0000496 

4 1 0.0 -em 0.0000496 4 7 0.0 -em 0.0000496 7 4 0.0 -em 

0.0000496 1 7 17.0 -em 0.0000496 7 1 0.0 -ej 0.0013275 7 1 -en 

0.0013275 1 0.000727 -em 0.0013275 1 7 0.0 -em 0.0013275 7 1 0.0 

 

Command Line 4. The model inferred from G-PhoCS but with only one event of gene 

flow, from the ancestor of dogs and wolves to golden jackal: 

 

./macs 13 30000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 -n 1 0.000010 

-n 2 0.000106 -n 3 0.000077 -n 4 0.001044 -n 5 0.000457 -n 6 

0.000217 -n 7 0.000778 -m 2 4 0.0 -m 4 2 0.0 -m 3 6 0.0 -m 6 3 

0.0 -m 4 7 0.0 -m 7 4 0.0 -ej 0.0000403 2 1 -en 0.0000403 1 

0.000032 -em 0.0000403 1 4 0.0 –em 0.0000403 4 1 0.0 -em 

0.0000403 2 4 0.0 -em 0.0000403 4 2 0.0 -ej 0.0000427 3 1 -en 

0.0000427 1 0.000080 –em 0.0000427 1 6 0.0 -em 0.0000427 6 1 0.0 



	
  
 

-em 0.0000427 3 6 0.0 -em 0.0000427 6 3 0.0 -ej 0.0000446 5 4 -

en 0.0000446 4 0.000056 -em 0.0000446 1 4 0.0 -em 0.0000446 4 1 

0.0 –em 0.0000446 4 7 0.0 -em 0.0000446 7 4 0.0 -ej 0.0000449 6 4 

-en 0.0000449 4 0.000505 -em 0.0000449 1 4 0.0 -em 0.0000449 4 1 

0.0 -em 0.0000449 4 7 0.0 -em 0.0000449 7 4 0.0 –ej 0.0000496 4 1 

-en 0.0000496 1 0.001800 -em 0.0000496 1 4 0.0 -em 0.0000496 4 1 

0.0 -em 0.0000496 4 7 0.0 –em 0.0000496 7 4 0.0 -em 0.0000496 1 7 

0.0 -em 0.0000496 7 1 746.0 -ej 0.0013275 7 1 -en 0.0013275 1 

0.000727 –em 0.0013275 1 7 0.0 -em 0.0013275 7 1 0.0 

 

Command Line 5. The model inferred from G-PhoCS but with only one event of gene 

flow, from Israeli wolf to golden jackal: 

./macs 13 30000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 -n 1 0.000010 

-n 2 0.000106 -n 3 0.000077 -n 4 0.001044 -n 5 0.000457 -n 6 

0.000217 -n 7 0.000778 -m 2 4 0.0 -m 4 2 0.0 -m 3 6 0.0 -m 6 3 

0.0 -m 4 7 0.0 -m 7 4 1162.0 –ej 0.0000403 2 1 -en 0.0000403 1 

0.000032 -em 0.0000403 1 4 0.0 -em 0.0000403 4 1 0.0 -em 

0.0000403 2 4 0.0 –em 0.0000403 4 2 0.0 -ej 0.0000427 3 1 -en 

0.0000427 1 0.000080 -em 0.0000427 1 6 0.0 -em 0.0000427 6 1 0.0 

–em 0.0000427 3 6 0.0 -em 0.0000427 6 3 0.0 -ej 0.0000446 5 4 -en 

0.0000446 4 0.000056 -em 0.0000446 1 4 0.0 -em 0.0000446 4 1 0.0 

-em 0.0000446 4 7 0.0 -em 0.0000446 7 4 0.0 –ej 0.0000449 6 4 -en 

0.0000449 4 0.000505 -em 0.0000449 1 4 0.0 -em 0.0000449 4 1 0.0 



	
  
 

-em 0.0000449 4 7 0.0 –em 0.0000449 7 4 0.0 -ej 0.0000496 4 1 -en 

0.0000496 1 0.001800 -em 0.0000496 1 4 0.0 -em 0.0000496 4 1 0.0 

–em 0.0000496 4 7 0.0 -em 0.0000496 7 4 0.0 -em 0.0000496 1 7 0.0 

-em 0.0000496 7 1 0.0 -ej 0.0013275 7 1 -en 0.0013275 1 0.000727 

-em 0.0013275 1 7 0.0 -em 0.0013275 7 1 0.0 

Command Line 6. ms command line that uses the demographic history estimated from 

G- PhoCS. 

	
  

./ms 7 1 -t 1000 -r 920 1000 -I 7 1 1 1 1 1 1 1 -n 1 0.000010 -n 

2 0.000106 -n 3 0.000077 -n 4 0.001044 -n 5 0.000457 -n 6 

0.000217 -n 7 0.000778 -m 2 4 4505.0 -m 4 2 1840.0 -m 3 6 573.0 

-m 6 3 942.0 -m 4 7 58.0 -m 7 4 1162.0 -ej 0.0000403 2 1 -en 

0.0000403 1 0.000032 -em 0.0000403 1 4 0.0 -em 0.0000403 4 1 0.0 

-em 0.0000403 2 4 0.0 –em 0.0000403 4 2 0.0 -ej 0.0000427 3 1 -en 

0.0000427 1 0.000080 -em 0.0000427 1 6 0.0 -em 0.0000427 6 1 0.0 

–em 0.0000427 3 6 0.0 -em 0.0000427 6 3 0.0 -ej 0.0000446 5 4 - 

en 0.0000446 4 0.000056 -em 0.0000446 1 4 0.0 -em 0.0000446 4 1 

0.0 -em 0.0000446 4 7 0.0 -em 0.0000446 7 4 0.0 –ej 0.0000449 6 4 

-en 0.0000449 4 0.000505 -em 0.0000449 1 4 0.0 -em 0.0000449 4 1 

0.0 -em 0.0000449 4 7 0.0 –em 0.0000449 7 4 0.0 -ej 0.0000496 4 1 

-en 0.0000496 1 0.001800 -em 0.0000496 1 4 0.0 -em 0.0000496 4 1 

0.0 –em 0.0000496 4 7 0.0 -em 0.0000496 7 4 0.0 -em 0.0000496 1 7 

17.0 -em 0.0000496 7 1 746.0 -ej 0.0013275 7 1 –en 0.0013275 1 



	
  
 

0.000727 -em 0.0013275 1 7 0.0 -em 0.0013275 7 1 0.0 

 

Command Line 7. Model where the dogs and wolves are each a separate clade, 

identical to Command Line 1, except for the simulation of smaller (2Mb) genomic 

regions. 

./macs 13 2000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 -n 1 0.000010 

-n 2 0.000106 -n 3 0.000077 -n 4 0.001044 –n 5 0.000457 -n 6 

0.000217 -n 7 0.000778 -m 2 4 4505.0 -m 4 2 1840.0 -m 3 6 573.0 

-m 6 3 942.0 -m 4 7 58.0 –m 7 4 1162.0 -ej 0.0000403 2 1 -en 

0.0000403 1 0.000032 -em 0.0000403 1 4 0.0 -em 0.0000403 4 1 0.0 

–em 0.0000403 2 4 0.0 -em 0.0000403 4 2 0.0 -ej 0.0000427 3 1 -en 

0.0000427 1 0.000080 -em 0.0000427 1 6 0.0 –em 0.0000427 6 1 0.0 

-em 0.0000427 3 6 0.0 -em 0.0000427 6 3 0.0 -ej 0.0000446 5 4 -

en 0.0000446 4 0.000056 –em 0.0000446 1 4 0.0 -em 0.0000446 4 1 

0.0 -em 0.0000446 4 7 0.0 -em 0.0000446 7 4 0.0 -ej 0.0000449 6 

4 –en 0.0000449 4 0.000505 -em 0.0000449 1 4 0.0 –em 0.0000449 4 

1 0.0 -em 0.0000449 4 7 0.0 -em 0.0000449 7 4 0.0 -ej 0.0000496 

4 1 -en 0.0000496 1 0.001800 –em 0.0000496 1 4 0.0 -em 0.0000496 

4 1 0.0 -em 0.0000496 4 7 0.0 -em 0.0000496 7 4 0.0 -em 

0.0000496 1 7 17.0 - em 0.0000496 7 1 746.0 -ej 0.0013275 7 1 -

en 0.0013275 1 0.000727 -em 0.0013275 1 7 0.0 -em 0.0013275 7 1 

0.0 

 



	
  
 

Command Line 8. Regional domestication model. 

./macs 13 2000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 -n 1 0.000010 

-n 2 0.000128 -n 3 0.000032 -n 4 0.000889 –n 5 0.000565 -n 6 

0.000171 -n 7 0.000771 -m 1 2 20054 –m 2 1 59 -m 1 3 3459 -m 3 1 

9560 -m 2 3 51 -m 3 2 7618 -m 4 5 5276 -m 5 4 48 -m 4 6 19 -m 6 

4 4958 -m 5 6 26 -m 6 5 5312 -m 4 7 182.0 -m 7 4 1207.0 -ej 

0.0000478 4 2 -en 0.0000478 2 0.000437 -em 0.0000478 1 2 0.0 –em 

0.0000478 2 1 0.0 -em 0.0000478 2 3 0.0 -em 0.0000478 3 2 0.0 -

em 0.0000478 4 5 0.0 -em 0.0000478 5 4 0.0 -em 0.0000478 4 6 0.0 

-em 0.0000478 6 4 0.0 –em 0.0000478 4 7 0.0 -em 0.0000478 7 4 0.0

 -ej 0.0000614 5 1 -en 0.0000614 1 0.000162 -em 0.0000478 1 2 

0.0 –em 0.0000478 2 1 0.0 -em 0.0000478 1 3 0.0 -em 0.0000478 3 1 

0.0 -em 0.0000478 4 5 0.0 -em 0.0000478 5 4 0.0 -em 0.0000478 5 

6 0.0 -em 0.0000478 6 5 0.0 –ej 0.0000617 6 3 -en 0.0000617 3 

0.000017 -em 0.0000478 3 2 0.0 -em 0.0000478 2 3 0.0 -em 

0.0000478 1 3 0.0 –em 0.0000478 3 1 0.0 -em 0.0000478 6 5 0.0 -em 

0.0000478 5 6 0.0 -em 0.0000478 4 6 0.0 -em 0.0000478 6 4 0.0 -

ej 0.0000618 2 1 -en 0.0000618 1 0.000252 –ej 0.0000626 3 1 -en 

0.0000626 1 0.001790 -em 0.0000626 1 7 3.0 -em 0.0000626 7 1 

782.0 -ej 0.0013859 7 1 –en 0.0013859 1 0.000682 -em 0.0013859 1 

7 0.0 -em 

0.0013859 7 1 0.0 

 



	
  
 

Command Line 9. Origin of dogs from the Israeli wolf. 

./macs 13 2000000 -t 1 -r 0.92 -I 7 1 2 2 2 2 2 2 -n 1 0.000010 

-n 2 0.000103 -n 3 0.000076 -n 4 0.000894 –n 5 0.000445 -n 6 

0.000221 -n 7 0.000765 -m 2 4 5032.0 -m 4 2 1196.0 -m 3 6 865.0 

-m 6 3 524.0 -m 4 7 142.0 –m 7 4 1063.0 -ej 0.0000401 2 1 -en 

0.0000401 1 0.000025 -em 0.0000401 1 4 0.0 -em 0.0000401 4 1 0.0 

–em 0.0000401 2 4 0.0 -em 0.0000401 4 2 0.0 -ej 0.0000419 3 1 -en 

0.0000419 1 0.000029 -em 0.0000419 1 6 0.0 –em 0.0000419 6 1 0.0 

-em 0.0000419 3 6 0.0 -em 0.0000419 6 3 0.0 -ej 0.0000444 4 1 -

en 0.0000444 1 0.000186 –em 0.0000444 1 4 0.0 -em 0.0000444 4 1 

0.0 -em 0.0000444 4 7 0.0 -em 0.0000444 7 4 0.0 -ej 0.0000447 5 

1 –en 0.0000447 1 0.000229 -em 0.0000447 1 4 0.0 –em 0.0000447 4 

1 0.0 -em 0.0000447 4 7 0.0 -em 0.0000447 7 4 0.0 -ej 0.0000450 

6 1 -en 0.0000450 1 0.001801 –em 0.0000450 1 4 0.0 -em 0.0000450 

4 1 0.0 -em 0.0000450 4 7 0.0 -em 0.0000450 7 4 0.0 -em 

0.0000450 1 7 5.0 -em 0.0000450 7 1 778.0 -ej 0.0013954 7 1 -en 

0.0013954 1 0.000663 -em 0.0013954 1 7 0.0 -em 0.0013954 7 1 0.0 
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